View Full Version : simplifying (8a) / (a^2 - b^2) + (2a) / (a^2 - ab)

ptebwwong

10-07-2008, 09:15 PM

I need help with this problem:

Simplify.

8a + 2a

__________ ______________

a^2-b^2 a^2-ab

So far this is what I have.

8a + 2a

___________ _____________

(a-b)(a+b) a(a-b)

4

______________

a(a+b)

Is this correct?

Mrspi

10-07-2008, 09:57 PM

I need help with this problem:

Simplify.

8a + 2a

__________ ______________

a^2-b^2 a^2-ab

So far this is what I have.

8a + 2a

___________ _____________

(a-b)(a+b) a(a-b)

4

______________

a(a+b)

Is this correct?

so...this is your problem:

8a 2a

--------- + --------

a^2 - b^2 a^2 + ab

You correctly factored the denominators, which is the first step in finding the common denominator:

8a 2a

----------- + -----------

(a + b)(a - b) a(a + b)

Now...what is the common denominator for the two fractions? It looks to me like the common denominator must contain these factors: a (a + b)(a - b)

Your next step is to rewrite each fraction as an equivalent fraction with a(a + b)(a - b) as its denominator. To accomplish this, you'll need to multiply numerator and denominator of the first fraction by "a", and numerator and denominator of the second fraction by (a - b):

8a(a) 2a(a - b)

----------- + -----------------

(a+b)(a-b)a (a+b)(a-b)a

NOW....the two fractions have the same denominator. ADD the numerators, and put the result over the common denominator.

I will leave it to you to finish the problem.

ptebwwong

10-08-2008, 10:13 AM

Is the answer

-3z-23

________

(z-5)(z+4)

What would the restrictions be for this problem?

Is this correct?

x does not equal 0

Subhotosh Khan

10-08-2008, 12:54 PM

Is the answer

-3z-23

________

(z-5)(z+4)

What would the restrictions be for this problem?

Is this correct?

x does not equal 0

I think you are putting up solution for wrong problem (where did 'z' come from?)

Powered by vBulletin® Version 4.2.2 Copyright © 2014 vBulletin Solutions, Inc. All rights reserved.