Trigonometric Form

chelseafry19

New member
Joined
Mar 10, 2010
Messages
2
I have no idea how to rewrite things in trigonometric form

"Rewrite in trigonometric form:"

-2 + sqrt(3i)
 
Hello, chelseafry19!

Rewrite in trigonometric form:   z  =  2+3i\displaystyle \text{Rewrite in trigonometric form: }\;z \;=\;-2 + \sqrt{3}\,i

Graph the complex number.


Code:
        *         |
        : *       |
      _ :   *     |
     /3 :     *
        :       * @
  - - - + - - - - + - - - -
            -2    |

\(\displaystyle \text{The hypotenuse is: }\:r^2 \:=\:(-2)^2 + (\sqrt{3})^2 \:=\:4+3 \:=\:7 \quad\Rightarrow\quad r \:=\:\sqrt{7}\)

Note that:   tanθ=32=32\displaystyle \text{Note that: }\;\tan\theta \:=\:\frac{\sqrt{3}}{-2} \:=\:-\frac{\sqrt{3}}{2}

. . Hence: θ=arctan(32)where θ is in Quadrant 2.\displaystyle \text{Hence: }\:\theta \:=\:\arctan\left(-\frac{\sqrt{3}}{2}\right)\:\text{where }\theta\text{ is in Quadrant 2.}


Therefore:   z  =  7(cosθ+isinθ)\displaystyle \text{Therefore: }\;z \;=\;\sqrt{7}\,\bigg(\cos\theta + i\sin\theta\bigg)

 
Top