Hey there. I've had a problem that I've been stumbling over for the past 5 hours or so. Any help would be really, really appreciated.

Make the following change of variables from rectangular coordinates to polar coordinates:

x = r*cos(@), y = r*sin(@), r^2 = x^2 + y^2, @ = arctan(y/x)

Then Show:

r * dr/dt = x * dx/dt + y * dy/dt and (r^2) * d@/dt = x * dy/dt - y * dx/dt

Then express the following in terms of polar coordinates, where dr/dt = r^3 and d@/dt = -1

dx/dt = y + x * (x^2 + y^2)

dy/dt = -x + y * (x^2 + y^2)

Here's the work I have so far. I fear a good percentage of it is wrong.

r^2 = x^2 + y^2

d/dt(r^2 = x^2 + y^2) = [2r(dr/dt) = 2x(dx/dt) + 2y(dy/dt)] -> r(dr/dt) = x(dx/dt) + y(dy/dt)

As for (r^2) * d@/dt = x * dy/dt - y * dx/dt, I have no idea.

dx/dt = y + x * (x^2 + y^2)

rsin(t) + (r^3)cos(t) = rsin(t) + rcos(t)[(rcos(t))^2 + (rsin(t))^2]

rsin(t) + (r^3)cos(t) = rsin(t) + (r^3)cos(t)

0 = 0

dy/dt = -x + y * (x^2 + y^2)

-rcos(t) + (r^3)sin(t) = -rcos(t) + (r^3)sin(t)

0 = 0

Obviously those last two parts are wrong, as from there I am supposed to graph the phase line diagram for r, then find a solution in terms of r and @ when x(0)=1 and y(0)=0. Any help would be greatly appreciated, as I've been working on this problem since 3:30 today. Seeing as it is now almost 1am, I'm getting some rest. I have another problem I'm stumped on as well, but it's rather difficult, and I already feel like a bother for asking help on this at such a late hour. Thank you to anyone who does help. I'll be awake again in about 7 hours to answer any questions regarding this.

## Bookmarks