Problem with definate integrals?

twohaha

New member
Joined
Apr 7, 2012
Messages
18
First make a substitution and then use integration by parts to evaluate the integral:

\displaystyle \int sin (sqrt x)dx

This is what I have done up to now:

dv = dx
v = x
sin (sqrt x) = u
(0.5 cos (sqrt x))/ sqrt (x) = du

x sin (sqrt x) - \displaystyle \int (0.5x cos (sqrt x))/ sqrt (x)dx
 
First make a substitution and then use integration by parts to evaluate the integral:

\displaystyle \int sin (sqrt x)dx

This is what I have done up to now:

dv = dx
v = x
sin (sqrt x) = u
(0.5 cos (sqrt x))/ sqrt (x) = du

x sin (sqrt x) - \displaystyle \int (0.5x cos (sqrt x))/ sqrt (x)dx

\displaystyle \int sin (sqrt x)dx

substitute

u = √x → u2 = x → dx = 2u du

\displaystyle \int sin (sqrt x)dx = 2\displaystyle \int u * sin (u)du

Now use integration by parts.......
 
Top