Sin Derivative Proof

Jason76

Senior Member
Joined
Oct 19, 2012
Messages
1,180
Post Edited

The professor was working on this today in class.

f(x)=sin(x)\displaystyle f(x) = \sin(x)

f(x)=ddxsin(x)=cos(x)\displaystyle f'(x) = \dfrac{d}{dx} \sin(x) = \cos(x)

Proof

Using: limh0[(x+h)(f(x))h]\displaystyle \lim h \to 0[\dfrac{(x + h) - (f(x))}{h}]

limh0[sin(x+h)(sin(x))h]\displaystyle \lim h \to 0[\dfrac{\sin(x + h) - (\sin(x))}{h}]

limh0[[sin(x)cos(h)+cos(x)sin(h)](sin(x))h]\displaystyle \lim h \to 0[\dfrac{[\sin(x)\cos(h) + \cos(x)\sin(h)] - (\sin(x))}{h}] using sum and difference identity sin(A+B)=sin(A)cos(B)+cos(A)sin(B)\displaystyle \sin(A + B) = \sin(A) \cos(B) + \cos(A) \sin(B) for sin(x+h)\displaystyle \sin(x + h) Next move :confused:
 
Last edited:
The professor was working on this today in class.

f(x)=sin(x)\displaystyle f(x) = \sin(x)

f(x)=ddxsin(x)=cos(x)\displaystyle f'(x) = \dfrac{d}{dx} \sin(x) = \cos(x)

Proof

Using: limh0[(x+h)(f(x))h]\displaystyle \lim h \to 0[\dfrac{(x + h) - (f(x))}{h}]

limh0[sin(x+h)(sin(x))h]\displaystyle \lim h \to 0[\dfrac{\sin(x + h) - (\sin(x))}{h}]

limh0[sin(x)cos(x)+cos(x)sin(x)(sin(x))h]\displaystyle \lim h \to 0[\dfrac{\sin(x)\cos(x) + \cos(x)\sin(x) - (\sin(x))}{h}] using sum and difference identity sin(A+B)=sin(A)cos(B)+cos(A)sin(B)\displaystyle \sin(A + B) = \sin(A) \cos(B) + \cos(A) \sin(B) for sin(x+h)\displaystyle \sin(x + h) ====> WRONG! (See below)Next move :confused:

sin(x+h) = sin(x)cos(h) + cos(x)sin(h)
 
limh0sin(x)cos(h)+cos(x)sin(h)sin(x)h\displaystyle lim_{h \rightarrow 0}\dfrac{sin(x)cos(h)+cos(x)sin(h)-sin(x)}{h}

=limh0sin(x)cos(h)sin(x)+cos(x)sin(h)h\displaystyle =lim_{h \rightarrow 0}\dfrac{sin(x)cos(h)-sin(x)+cos(x)sin(h)}{h}

=limh0sin(x)[cos(h)1]+cos(x)sin(h)h\displaystyle =lim_{h \rightarrow 0}\dfrac{sin(x)[cos(h)-1]+cos(x)sin(h)}{h}

=limh0(sin(x)[cos(h)1]h+cos(x)sin(h)h)\displaystyle =lim_{h \rightarrow 0}\left(\dfrac{sin(x)[cos(h)-1]}{h}+\dfrac{cos(x)sin(h)}{h}\right)

Can you take it from here? Hint: Use the two limit rules for trig that you learned, namely:

limh0sin(h)h=1  and  limh01cos(h)h=0\displaystyle lim_{h \rightarrow 0}\dfrac{sin(h)}{h}=1 \ \ and\ \ lim_{h \rightarrow 0}\dfrac{1-cos(h)}{h}=0
 
Original post edited

[sin(x)cos(h)+cos(x)sin(h)](sin(x))h=sin(x)(cos(h)1h)+cos(x)(sin(h)h)\displaystyle \\\dfrac{[\sin(x)\cos(h) + \cos(x)\sin(h)] - (\sin(x))}{h}=\\\sin (x)\left( {\dfrac{{\cos (h) - 1}}{h}} \right) + \cos (x)\left( {\dfrac{{\sin (h)}}{h}} \right)
 
[sin(x)cos(h)+cos(x)sin(h)](sin(x))h=sin(x)(cos(h)1h)+cos(x)(sin(h)h)\displaystyle \\\dfrac{[\sin(x)\cos(h) + \cos(x)\sin(h)] - (\sin(x))}{h}=\\\sin (x)\left( {\dfrac{{\cos (h) - 1}}{h}} \right) + \cos (x)\left( {\dfrac{{\sin (h)}}{h}} \right)

:confused: What are u doing here exactly?
 
Algebra.......

Sir Michael Wrote

limh0sin(x)cos(h)+cos(x)sin(h)sin(x)h\displaystyle lim_{h \rightarrow 0}\dfrac{sin(x)cos(h)+cos(x)sin(h)-sin(x)}{h}

=limh0sin(x)cos(h)sin(x)+cos(x)sin(h)h\displaystyle =lim_{h \rightarrow 0}\dfrac{sin(x)cos(h)-sin(x)+cos(x)sin(h)}{h}

=limh0sin(x)[cos(h)1]+cos(x)sin(h)h\displaystyle =lim_{h \rightarrow 0}\dfrac{sin(x)[cos(h)-1]+cos(x)sin(h)}{h}

=limh0(sin(x)[cos(h)1]h+cos(x)sin(h)h)\displaystyle =lim_{h \rightarrow 0}\left(\dfrac{sin(x)[cos(h)-1]}{h}+\dfrac{cos(x)sin(h)}{h}\right)

Can you take it from here? Hint: Use the two limit rules for trig that you learned, namely:

limh0sin(h)h=1  and  limh01cos(h)h=0\displaystyle lim_{h \rightarrow 0}\dfrac{sin(h)}{h}=1 \ \ and\ \ lim_{h \rightarrow 0}\dfrac{1-cos(h)}{h}=0

Read it carefully.....
 
Essentially, this proof is using the facts that limx0sin(x)x=1\displaystyle \lim_{x\to 0}\frac{sin(x)}{x}= 1 and limx01cos(x)x=0\displaystyle \lim_{x\to 0}\frac{1- cos(x)}{x}= 0 which are typically proved with a rather hand-waving "geometric" proof.

It is also possible to define sin(x)=n=0(1)n(2n+1)!x2n+1\displaystyle sin(x)= \sum_{n= 0}^\infty \frac{(-1)^n}{(2n+1)!} x^{2n+1} and cos(xZ)=n=0(1)n(2n)!x2n\displaystyle cos(xZ)= \sum_{n= 0}^\infty \frac{(-1)^n}{(2n)!}x^{2n}, showing that those sums converge uniformly over any finite integral, and determine the derivatives by differentiating "term by term".
 
Top