Find x

frctl

Full Member
Joined
Jun 29, 2019
Messages
252
Screen Shot 2020-03-04 at 4.26.37 PM.png

I don't know how to solve this using the properties of logarithmic functions.
 
Can you write each log term on the right side of the equal sign without a multiple in front.

For example 3log4(9) = log4(93)

Can you then write it with one log?
 
What jomo is suggesting is quicker, but you could also think about clearing fractions.

[MATH]log_b(x) = \frac{2}{3} log_b(8) + \frac{1}{2} log_b(9) - log_b(6) \implies [/MATH]
[MATH]2 * 3 * log_b(x) = 2 * 3 * \left (\frac{2}{3} log_b(8) + \frac{1}{2} log_b(9) - log_b(6) \right ) \implies[/MATH]
[MATH]6log_b(x) = 4 log_b(8) + 3 log_b(9) - 6log_b(6) \implies WHAT?[/MATH]
 
Last edited:
What jomo is suggesting is quicker, but you could also think about clearing fractions.
[MATH]log_b(x) = \frac{2}{3} log_b(8) + \frac{1}{2} log_b(9) - log_b(6) \implies [/MATH][MATH]2 * 3 * log_b(x) = 2 * 3 * \left (\frac{2}{3} log_b(8) + \frac{1}{2} log_b(9) - log_b(6) \right ) \implies[/MATH][MATH]6log_b(x) = 4 log_b(8) + 3 log_b(9) - 6log_b(6) \implies WHAT?[/MATH]
Hi Jeff you miss-groups..
\(\dfrac{2}{3}\log_b(8)=2\log_b(2)\) , \(\dfrac{1}{2}\log_b(9)=\log_b(3)\) and \(\log_b(6)=\log_b(2)+\log_b(3)\)
 
Hi Jeff you miss-groups..
\(\dfrac{2}{3}\log_b(8)=2\log_b(2)\) , \(\dfrac{1}{2}\log_b(9)=\log_b(3)\) and \(\log_b(6)=\log_b(2)+\log_b(3)\)
Yes, that is easiest of all. Duh.
 
I obtained the following (not sure about the exponents)
Screen Shot 2020-03-04 at 5.22.35 PM.png- logb6
 
[MATH]log_b(8^{2/3}) + log_b(9^{1/2} = log_b(8^{2/3} * 9^{1/2}) = log_b(4 * 3) = log_b(12).[/MATH]
Can you explain why? (HINT: Remember PEMDAS.)

Now [MATH]log_b(u) - log_b(v) = WHAT?[/MATH]
 
Screen Shot 2020-03-04 at 6.32.03 PM.png

I'm not sure how you obtained logb(4 · 3)

Does it equal
logb(u · v)
 
The property I am looking for is
logbMN = logbM + logbN

I don't understand the last bit you wrote
 
I will work this out for you using pka's ideas.

\(\displaystyle \frac{2}{3}\)logb8 = 2logb81/3 = 2logb2

logb91/2 = logb3

logb6 = logb(2*3) = logb2 + logb3

Actually you can continue from here.
 
How is this

Screen Shot 2020-03-05 at 8.56.04 AM.png

Or I might have mixed up the signs
 
Last edited:
I shall do this step by step, using pka's idea, slightly modified.

But first here are the basic laws of logarithms.

Given that a, b, and c are positive real numbers, and b is not equal to 1:

[MATH]log_b(a) = x \iff a = b^x[/MATH].

[MATH]\therefore log_b(1) = 0 \text { and } log_b(b) = 1.[/MATH]
[MATH]log_b(a * c) = log_b(a) + log_b(c).[/MATH]
[MATH]-\ log_b(a) = log_b \left ( \dfrac{1}{a} \right ) \implies log_b(c) - log_b(a) = log_b \left ( \dfrac{c}{a} \right ).[/MATH]
[MATH]u log_b(a) = log_b(a^u).[/MATH]
[MATH]log_b(a) = log_b(c) \iff a = c.[/MATH]
These along with the change of base law must be memorized and understood to use logs.

Now your problem step by step the easy way

[MATH]log_b(x) = \frac{2}{3} log_b(8) + \frac{1}{2} log_b(9) - log(6)[/MATH].

[MATH]\therefore log_b(x) = \frac{2}{3} log_b(2^3) + \frac{1}{2} log_b(3^2) - log_b(6)[/MATH].

[MATH]\therefore log_b(x) =log_b(2^{(3 * 2 /3)})+ log_b(3^{(2 * 1/2)}) - log_b(6).[/MATH]
[MATH]\therefore log_b(x) = log_b(2^2) + log_b(3^1) - log_b(6).[/MATH]
[MATH]\therefore log_b(x) = log_b(4) + log_b(3) - log_b(6).[/MATH]
[MATH]\therefore log_b(x) = log_b(4 * 3) - log_b(6) = log_b(12) - log_b(6).[/MATH]
[MATH]\therefore log_b(x) = log_b \left ( \dfrac{12}{6} \right ).[/MATH]
[MATH]\therefore log_b(x) = log_b(2).[/MATH]
[MATH]\therefore x = 2.[/MATH]
Learn the laws and be careful, and logs will give you no trouble.
 
Top