Riemann sums: Which sum matches int[from 2 to 6] [1/(1 + x^5)] dx ?

kiu1

New member
Joined
Nov 30, 2017
Messages
3
Consider the following integral:

. . . . .\(\displaystyle \displaystyle \int_2^6\, \dfrac{x}{1\, +\, x^5}\, dx\)

Which of the following expressions represents the integral as a limit of Riemann sums?

. . .\(\displaystyle \displaystyle \mbox{A. }\, \lim_{n \rightarrow \infty}\, \sum_{i=1}^n\, \dfrac{4}{n}\, \dfrac{2\, +\, \frac{4i}{n}}{1\, +\, \left(2\, +\, \frac{4i}{n}\right)^5}\)

. . .\(\displaystyle \displaystyle \mbox{B. }\, \lim_{n \rightarrow \infty}\, \sum_{i=1}^n\, \dfrac{4}{n}\, \dfrac{2\, +\, \frac{4i}{n}}{1\, +\, \left(2\, +\, \frac{4i}{n}\right)}\)

. . .\(\displaystyle \displaystyle \mbox{C. }\, \lim_{n \rightarrow \infty}\, \sum_{i=1}^n\, \dfrac{6}{n}\, \dfrac{2\, +\, \frac{6i}{n}}{1\, +\, \left(2\, +\, \frac{6i}{n}\right)^5}\)

. . .\(\displaystyle \displaystyle \mbox{D. }\, \lim_{n \rightarrow \infty}\, \sum_{i=1}^n\, \dfrac{2\, +\, \frac{6i}{n}}{1\, +\, \left(2\, +\, \frac{6i}{n}\right)^5}\)

. . .\(\displaystyle \displaystyle \mbox{E. }\, \lim_{n \rightarrow \infty}\, \sum_{i=1}^n\, \dfrac{6}{n}\, \dfrac{2\, +\, \frac{6i}{n}}{1\, +\, \left(2\, +\, \frac{6i}{n}\right)}\)

. . .\(\displaystyle \displaystyle \mbox{F. }\, \lim_{n \rightarrow \infty}\, \sum_{i=1}^n\, \dfrac{2\, +\, \frac{4i}{n}}{1\, +\, \left(2\, +\, \frac{4i}{n}\right)^5}\)
 

Attachments

  • ???.jpg
    ???.jpg
    15.6 KB · Views: 6
Last edited by a moderator:
Consider the following integral:

. . . . .\(\displaystyle \displaystyle \int_2^6\, \dfrac{x}{1\, +\, x^5}\, dx\)

Which of the following expressions represents the integral as a limit of Riemann sums?

. . .\(\displaystyle \displaystyle \mbox{A. }\, \lim_{n \rightarrow \infty}\, \sum_{i=1}^n\, \dfrac{4}{n}\, \dfrac{2\, +\, \frac{4i}{n}}{1\, +\, \left(2\, +\, \frac{4i}{n}\right)^5}\)

. . .\(\displaystyle \displaystyle \mbox{B. }\, \lim_{n \rightarrow \infty}\, \sum_{i=1}^n\, \dfrac{4}{n}\, \dfrac{2\, +\, \frac{4i}{n}}{1\, +\, \left(2\, +\, \frac{4i}{n}\right)}\)

. . .\(\displaystyle \displaystyle \mbox{C. }\, \lim_{n \rightarrow \infty}\, \sum_{i=1}^n\, \dfrac{6}{n}\, \dfrac{2\, +\, \frac{6i}{n}}{1\, +\, \left(2\, +\, \frac{6i}{n}\right)^5}\)

. . .\(\displaystyle \displaystyle \mbox{D. }\, \lim_{n \rightarrow \infty}\, \sum_{i=1}^n\, \dfrac{2\, +\, \frac{6i}{n}}{1\, +\, \left(2\, +\, \frac{6i}{n}\right)^5}\)

. . .\(\displaystyle \displaystyle \mbox{E. }\, \lim_{n \rightarrow \infty}\, \sum_{i=1}^n\, \dfrac{6}{n}\, \dfrac{2\, +\, \frac{6i}{n}}{1\, +\, \left(2\, +\, \frac{6i}{n}\right)}\)

. . .\(\displaystyle \displaystyle \mbox{F. }\, \lim_{n \rightarrow \infty}\, \sum_{i=1}^n\, \dfrac{2\, +\, \frac{4i}{n}}{1\, +\, \left(2\, +\, \frac{4i}{n}\right)^5}\)

What are your thoughts?

Please share your work with us ...even if you know it is wrong.

If you are stuck at the beginning tell us and we'll start with the definitions.

You need to read the rules of this forum. Please read the post titled "Read before Posting" at the following URL:

http://www.freemathhelp.com/forum/announcement.php?f=33
 
Last edited by a moderator:
Consider the following integral:

. . . . .\(\displaystyle \displaystyle \int_2^6\, \dfrac{x}{1\, +\, x^5}\, dx\)

Which of the following expressions represents the integral as a limit of Riemann sums?

. . .\(\displaystyle \displaystyle \mbox{A. }\, \lim_{n \rightarrow \infty}\, \sum_{i=1}^n\, \dfrac{4}{n}\, \dfrac{2\, +\, \frac{4i}{n}}{1\, +\, \left(2\, +\, \frac{4i}{n}\right)^5}\)

. . .\(\displaystyle \displaystyle \mbox{B. }\, \lim_{n \rightarrow \infty}\, \sum_{i=1}^n\, \dfrac{4}{n}\, \dfrac{2\, +\, \frac{4i}{n}}{1\, +\, \left(2\, +\, \frac{4i}{n}\right)}\)

. . .\(\displaystyle \displaystyle \mbox{C. }\, \lim_{n \rightarrow \infty}\, \sum_{i=1}^n\, \dfrac{6}{n}\, \dfrac{2\, +\, \frac{6i}{n}}{1\, +\, \left(2\, +\, \frac{6i}{n}\right)^5}\)

. . .\(\displaystyle \displaystyle \mbox{D. }\, \lim_{n \rightarrow \infty}\, \sum_{i=1}^n\, \dfrac{2\, +\, \frac{6i}{n}}{1\, +\, \left(2\, +\, \frac{6i}{n}\right)^5}\)

. . .\(\displaystyle \displaystyle \mbox{E. }\, \lim_{n \rightarrow \infty}\, \sum_{i=1}^n\, \dfrac{6}{n}\, \dfrac{2\, +\, \frac{6i}{n}}{1\, +\, \left(2\, +\, \frac{6i}{n}\right)}\)

. . .\(\displaystyle \displaystyle \mbox{F. }\, \lim_{n \rightarrow \infty}\, \sum_{i=1}^n\, \dfrac{2\, +\, \frac{4i}{n}}{1\, +\, \left(2\, +\, \frac{4i}{n}\right)^5}\)
What is the Riemann-sum formula they gave you? How far have you gotten in plugging the given information into that formula?

Please be complete, starting with the limit-formula that your book gave you. Thank you! ;)
 
Top