
New Member
Switching Numbers: infinite ordered series with two elements in the wrong order
You are given an infinite ordered series with two elements in the wrong order (e.g. B, A, C, D, E, F, G, ....).
A switch is the rotation of three elements in the series (i.e. B, A, C can become A, C, B or C, B, A but cannot become A, B, C or B, C, A)
Show a sequence of switches that results in a perfectly ordered series
OR
Prove that such a sequence does not exist
Last edited by wonnacott; 01252018 at 06:19 PM.
Tags for this Thread
Posting Permissions
 You may not post new threads
 You may not post replies
 You may not post attachments
 You may not edit your posts

Forum Rules
Bookmarks