Results 1 to 5 of 5

Thread: The beahave of "infinity part"

  1. #1
    Junior Member
    Join Date
    Jul 2018
    Posts
    136

    The beahave of "infinity part"

    Suppose I have a function that has:
    "When x -> infinity, f(x) -> infinity"
    (1)
    How could I know the part of graph continue still going on with no stop point?
    a)
    You can say by trial and error for example.
    But that not rigors reason.No?
    b)
    You can say by function investigation function you can "define" the of graph of infinity.
    Why by little steps you can define it and not by huge number of step?
    How do you know you have all the importation by ?
    Why there is no loss of information by investigation so your know what about the continue part?
    (2) Is the a site on the history of the development on the investigation of function?
    continue part = the part to go infinity
    Last edited by shahar; 01-08-2019 at 02:38 PM.

  2. #2
    Elite Member
    Join Date
    Jan 2012
    Posts
    4,666
    Frankly, I don't understand what you are asking. Perhaps it is a language problem. You say "Suppose I have a function that has: "When x -> infinity, f(x) -> infinity". Do you mean you are given that and then want to know what the graph looks like or are you asking how to determine whether that is true or not?

  3. #3
    Elite Member
    Join Date
    Jan 2005
    Posts
    7,618
    Quote Originally Posted by shahar View Post
    Suppose I have a function that has:
    "When x -> infinity, f(x) -> infinity"
    (1) How could I know the part of graph continue still going on with no stop point? a)You can say by trial and error for example.
    But that not rigors reason.No? continue part = the part to go infinity
    If [tex]\mathop {\lim }\limits_{x \to \infty } f(x) = \infty [/tex] then [tex]\left( {\forall n \in {\mathbb{Z}^ + }} \right)\left( {\exists x>n} \right)\left[ {f(x) > n} \right][/tex]
    This is a strange question: if [tex]f(x)\to\infty[/tex] then the function get bigger & bigger.
    “A professor is someone who talks in someone else’s sleep”
    W.H. Auden

  4. #4
    Junior Member
    Join Date
    Jul 2018
    Posts
    136
    Quote Originally Posted by pka View Post
    If [tex]\mathop {\lim }\limits_{x \to \infty } f(x) = \infty [/tex] then [tex]\left( {\forall n \in {\mathbb{Z}^ + }} \right)\left( {\exists x>n} \right)\left[ {f(x) > n} \right][/tex]
    This is a strange question: if [tex]f(x)\to\infty[/tex] then the function get bigger & bigger.
    O.K.
    So, I will describe what I understood.
    (1) How can I know what will happen in the part infinity?
    -First I need to investigate it and it help to know if there is no function in infinity (the domain is not defined there).
    The easy case to know what happen in infinity:
    Extreme example with no domain: f = K (K = constant and f not a function)
    f = x/0 etc.
    And Now What I miss:
    The x-value of the coordinate is growing by one unit that is one when draw the x-y coordinate.
    So if the operation is get bigger I will know that the function go to infinity and it defined it by investigate.
    So, I will ask what the reason to know if operations are "getting" to infinity. I have two tools:
    -graph function (Calculus)
    -Induction if the "function" input if Natural number (Number Theory)

  5. #5
    Elite Member
    Join Date
    Jan 2005
    Posts
    7,618

    Wink

    Quote Originally Posted by shahar View Post
    O.K.
    So, I will describe what I understood.
    (1) How can I know what will happen in the part infinity?
    -First I need to investigate it and it help to know if there is no function in infinity (the domain is not defined there).
    The easy case to know what happen in infinity:
    Extreme example with no domain: f = K (K = constant and f not a function)
    f = x/0 etc.
    And Now What I miss:
    The x-value of the coordinate is growing by one unit that is one when draw the x-y coordinate.
    So if the operation is get bigger I will know that the function go to infinity and it defined it by investigate.
    So, I will ask what the reason to know if operations are "getting" to infinity. I have two tools:
    -graph function (Calculus)
    -Induction if the "function" input if Natural number (Number Theory)
    This is an honest if brutal answer which is no way meant to belittle you.
    You simply do not have a sufficient mathematical background to even begin to understand the answer t this question.
    To get sufficient background you need to do a course in preCalculus and a course in Calculus.
    There are no shortcuts. You just need to spend to time to do the necessary work to prepare yourself to understand the replies.
    “A professor is someone who talks in someone else’s sleep”
    W.H. Auden

Bookmarks

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •