• Welcome! The new FreeMathHelp.com forum is live. We've moved from VB4 to Xenforo 2.1 as our underlying software. Hopefully you find the upgrade to be a positive change. Please feel free to reach out as issues arise -- things will be a little different, and minor issues will no doubt crop up.

Calculate asymptotes and local extreme values

1Michael1

New member
Joined
Nov 22, 2012
Messages
1
I'm fed up with this question from my book. I've calculated the constants to this equation but got stuck at the asymptotes and local extreme values calculations which I need to plot the graph, perhaps anyone could help me out or guide me towards the solution of calculating the asymptotes/local extreme values and then to plot the graph.


Equation:


Define the constants A,B,C so that a function which is defined by

f(x) =
(1) (6/pi) arctan(2-(x+2)²) when x < -1
(2) x + c* |x| - 1 when -1 ≥ x ≥ 1
(3) (1/Ax+B) + 4 when x > 1 och Ax + B ≠ 0


is continuous at x = -1 and differentiable in x = 1


_______________


I calculated the constants, A,B,C to:


A = -18


B = 16


C = 7/2


Any help is appreciated,


Thanks, Michael.
 

Subhotosh Khan

Super Moderator
Staff member
Joined
Jun 18, 2007
Messages
18,086
I'm fed up with this question from my book. I've calculated the constants to this equation but got stuck at the asymptotes and local extreme values calculations which I need to plot the graph, perhaps anyone could help me out or guide me towards the solution of calculating the asymptotes/local extreme values and then to plot the graph.


Equation:


Define the constants A,B,C so that a function which is defined by

f(x) =
(1) (6/pi) arctan(2-(x+2)²) when x < -1
(2) x + c* |x| - 1 when -1 ≥ x ≥ 1
(3) (1/Ax+B) + 4 when x > 1 och Ax + B ≠ 0


is continuous at x = -1 and differentiable in x = 1


_______________


I calculated the constants, A,B,C to:


A = -18


B = 16


C = 7/2


Any help is appreciated,


Thanks, Michael.
Are you sure you have posted the domains correctly?

Please review your post - very carefully - and make necessary corrections. We do not want to waste time and effort on the wrong problem.

Use a graphing calculator and estimate the answers - then confirm those analytically.
 
Top