Convert the following numbers to denary (base 10):

1) 736_8 (that's 736, base-8)

2) DE1_16 (that's DE1, base-16)

3) 1100101_2 (that's 1100101, base 2)

Using the following matrix X:

. . .[..2 1..3 ]

. . .[ -1 3..0 ]

. . .[..2 4 -2 ]

4) Evaluate the matrix Y = X^t (that's X-transpose).

5) S = |X|

6) Using the following matrix A:

. . .[..1 3 0 ]

. . .[ -1 2 1 ]

. . .[..3 1 2 ]

Evaluate the polynomial Y = A^3 - 3A^2

7) Obtain the solution to the set of linear equations using Cramer's Rule.

. . .2x - 3y + 1z = 4

. . .1x + 1y + 1z = 3

. . .1x + 4y - 3z = -3

So is that then:

. . .| 2 -3..1..4 |

. . .| 1..1.. 1..3 |

. . .| 1.. 4 -3 -3 |

8) Use Gaussian elimination to find the inverse of the matrix Q, where Q is:

. . .[..1..2 1 ]

. . .[ -3 -4 1 ]

. . .[..4..6 4 ]

_________________________________

*Edited by stapel -- Reason for edit: fixing formatting*