Metric Spaces.

Imum Coeli

Junior Member
Joined
Dec 3, 2012
Messages
86
Hello. We have just started metric spaces and I am not really sure what I'm doing. I was wondering if anyone could point out if I have made any terrible mistakes. For brevity, I'm saying that they are all complete metric spaces. Thanks.


Question:
State which of the following is a metric space, giving a brief reason for your answer. For any of the them are a metric space state whether or not it is complete, giving a brief reason for your answer.

a) (Rn,d),\displaystyle (\mathbb{R}^n,d), where d(x,y):=maxi{xiyi}\displaystyle d(x,y) := \max_i\{|x_i-y_i|\} where x=(x1,...,xn),y=(y1,...,yn)\displaystyle x=(x_1,...,x_n), y =(y_1,...,y_n)

b)(P,d)\displaystyle (\mathcal{P},d) where P:={polynomials in x},  d(p1,p2):=01p1(x)p2(x)dx.\displaystyle \mathcal{P} := \{ \textit{polynomials in x}\},\; d(p_1,p_2) := \int_0^1|p_1(x)-p_2(x)|dx.

c) (R2,d)\displaystyle (\mathbb{R}^2,d) where d((a,b),(c,d)):=adbc+ac\displaystyle d((a,b),(c,d)):= |ad-bc|+|a-c|.


Definitions:
[Metric Space]

Let X be any non-empty set. A metric on X is a function d:X×XR\displaystyle d:X \times X \mapsto \mathbb{R} satisfying:
1) d(x,y)=d(y,x)    x,yX\displaystyle d(x,y)=d(y,x) \;\forall\; x,y \in X
2) d(x,y)0    x=y\displaystyle d(x,y) \geq 0 \iff x=y
3) d(x,y)d(x,z)+d(z,y)    x,y,zR\displaystyle d(x,y) \leq d(x,z)+d(z,y) \;\forall\; x,y,z \in \mathbb{R}
The pair (X,d)\displaystyle (X,d) is called a metric space.

[Complete Metric Space]

A metric space is complete if every Cauchy sequence in X converges to an element of X.


Answer: (I think).

a)
1) d(x,y)=maxi{xiyi}=maxi{yixi}=d(y,x)\displaystyle d(x,y) = \max_i\{|x_i-y_i|\} = \max_i\{|y_i-x_i|\}= d(y,x)

2) d(x,y)=maxi{xiyi}>0\displaystyle d(x,y) = \max_i\{|x_i-y_i|\}>0 and d(x,x)=maxi{xixi}=0\displaystyle d(x,x) = \max_i\{|x_i-x_i|\}=0

3) Since xiyi=xizi+ziyi    xiyixizi+ziyi\displaystyle x_i -y_i = x_i -z_i +z_i -y_i \implies |x_i -y_i| \leq |x_i-z_i| +|z_i -y_i| it follows that maxi{xiyi}maxi{xizi}+maxi{ziyi}\displaystyle \max_i\{|x_i-y_i|\} \leq \max_i\{|x_i-z_i|\} +\max_i\{|z_i-y_i|\}

Hence (Rn,d)\displaystyle (\mathbb{R}^n,d) is a metric space.

Since X=Rn\displaystyle X = \mathbb{R}^n it is impossible to have a Cauchy sequence that converges to some x0Rn\displaystyle x_0 \notin \mathbb{R}^n, therefore it is a complete metric space.

b)
1) d(p1,p2)=01p1(x)p2(x)dx=01p2(x)p1(x)dx=d(p2,p1)\displaystyle d(p_1,p_2) = \int_0^1|p_1(x)-p_2(x)|dx =\int_0^1|p_2(x)-p_1(x)|dx =d(p_2,p_1)

2) Clearly d(p1,p2)=01p1(x)p2(x)dx>0\displaystyle d(p_1,p_2) = \int_0^1|p_1(x)-p_2(x)|dx >0 and d(p1,p1)=01p1(x)p1(x)dx=0\displaystyle d(p_1,p_1)=\int_0^1|p_1(x)-p_1(x)|dx=0

3) Since p1p2=p1p3+p3p2    p1p2p1p3+p3p2\displaystyle p_1 - p_2 = p_1 -p_3 +p_3 -p_2 \implies |p_1 - p_2| \leq |p_1 -p_3| +|p_3 -p_2| it follows that 01p1(x)p2(x)dx01p1(x)p3(x)dx+01p3(x)p2(x)dx\displaystyle \int_0^1|p_1(x)-p_2(x)|dx \leq \int_0^1|p_1(x)-p_3(x)|dx+\int_0^1|p_3(x)-p_2(x)|dx

Hence (P,d)\displaystyle (\mathcal{P},d) is a metric space.
Since the boundary of X is closed, it is complete.

c)
1) d((a,b),(c,d))=adbc+ac=cbda+ca=d((c,d),(a,b)).\displaystyle d((a,b),(c,d))= |ad-bc|+|a-c| = |cb-da|+|c-a| = d((c,d),(a,b)).

2) Clearly d((a,b),(c,d))=adbc+ac>0\displaystyle d((a,b),(c,d))=|ad-bc|+|a-c| > 0. Also d((a,b),(a,b))=abba+aa=0\displaystyle d((a,b),(a,b))= |ab-ba|+|a-a|=0.

3) Let x=(a,b),y=(c,d),z=(a,f).\displaystyle x = (a,b), y=(c,d), z=(a,f). Then we need to show that d((a,b),(c,d))d((a,b),(a,f))+d((a,f),(c,d))    x,y,zR\displaystyle d((a,b),(c,d)) \leq d((a,b),(a,f))+d((a,f),(c,d)) \;\forall\; x,y,z \in \mathbb{R}
By doing some algebra we see that this amounts to showing that adbcafab+adcf\displaystyle |ad-bc|\leq|af-ab|+|ad-cf|.
After a bit more algebra we find (assuming I didn't make a mistake) that
adbc+bccf+afabafab+adcf    adbcafab+adcf\displaystyle |ad-bc|+|bc-cf+af-ab| \leq |af-ab|+|ad-cf| \implies |ad-bc| \leq |af-ab|+|ad-cf|

Hence (R2,d)\displaystyle (\mathbb{R}^2,d) is a metric space.
This is also complete for similar reasons to a).
 
Hello. We have just started metric spaces and I am not really sure what I'm doing. I was wondering if anyone could point out if I have made any terrible mistakes. For brevity, I'm saying that they are all complete metric spaces. Thanks.


Question:
State which of the following is a metric space, giving a brief reason for your answer. For any of the them are a metric space state whether or not it is complete, giving a brief reason for your answer.

a) (Rn,d),\displaystyle (\mathbb{R}^n,d), where d(x,y):=maxi{xiyi}\displaystyle d(x,y) := \max_i\{|x_i-y_i|\} where x=(x1,...,xn),y=(y1,...,yn)\displaystyle x=(x_1,...,x_n), y =(y_1,...,y_n)

b)(P,d)\displaystyle (\mathcal{P},d) where P:={polynomials in x},  d(p1,p2):=01p1(x)p2(x)dx.\displaystyle \mathcal{P} := \{ \textit{polynomials in x}\},\; d(p_1,p_2) := \int_0^1|p_1(x)-p_2(x)|dx.

c) (R2,d)\displaystyle (\mathbb{R}^2,d) where d((a,b),(c,d)):=adbc+ac\displaystyle d((a,b),(c,d)):= |ad-bc|+|a-c|.


Definitions:
[Metric Space]

Let X be any non-empty set. A metric on X is a function d:X×XR\displaystyle d:X \times X \mapsto \mathbb{R} satisfying:
1) d(x,y)=d(y,x)    x,yX\displaystyle d(x,y)=d(y,x) \;\forall\; x,y \in X
2) d(x,y)0    x=y\displaystyle d(x,y) \geq 0 \iff x=y
3) d(x,y)d(x,z)+d(z,y)    x,y,zR\displaystyle d(x,y) \leq d(x,z)+d(z,y) \;\forall\; x,y,z \in \mathbb{R}
The pair (X,d)\displaystyle (X,d) is called a metric space.

[Complete Metric Space]

A metric space is complete if every Cauchy sequence in X converges to an element of X.


Answer: (I think).

a)
1) d(x,y)=maxi{xiyi}=maxi{yixi}=d(y,x)\displaystyle d(x,y) = \max_i\{|x_i-y_i|\} = \max_i\{|y_i-x_i|\}= d(y,x)

2) d(x,y)=maxi{xiyi}>0\displaystyle d(x,y) = \max_i\{|x_i-y_i|\}>0 and d(x,x)=maxi{xixi}=0\displaystyle d(x,x) = \max_i\{|x_i-x_i|\}=0

3) Since xiyi=xizi+ziyi    xiyixizi+ziyi\displaystyle x_i -y_i = x_i -z_i +z_i -y_i \implies |x_i -y_i| \leq |x_i-z_i| +|z_i -y_i| it follows that maxi{xiyi}maxi{xizi}+maxi{ziyi}\displaystyle \max_i\{|x_i-y_i|\} \leq \max_i\{|x_i-z_i|\} +\max_i\{|z_i-y_i|\}

Hence (Rn,d)\displaystyle (\mathbb{R}^n,d) is a metric space.
Looks good so far.

Since X=Rn\displaystyle X = \mathbb{R}^n it is impossible to have a Cauchy sequence that converges to some x0Rn\displaystyle x_0 \notin \mathbb{R}^n, therefore it is a complete metric space.
This is not sufficient- it assumes that a Cauchy sequence, as defined with this metric does converge.

b)
1) d(p1,p2)=01p1(x)p2(x)dx=01p2(x)p1(x)dx=d(p2,p1)\displaystyle d(p_1,p_2) = \int_0^1|p_1(x)-p_2(x)|dx =\int_0^1|p_2(x)-p_1(x)|dx =d(p_2,p_1)

2) Clearly d(p1,p2)=01p1(x)p2(x)dx>0\displaystyle d(p_1,p_2) = \int_0^1|p_1(x)-p_2(x)|dx >0 and d(p1,p1)=01p1(x)p1(x)dx=0\displaystyle d(p_1,p_1)=\int_0^1|p_1(x)-p_1(x)|dx=0

3) Since p1p2=p1p3+p3p2    p1p2p1p3+p3p2\displaystyle p_1 - p_2 = p_1 -p_3 +p_3 -p_2 \implies |p_1 - p_2| \leq |p_1 -p_3| +|p_3 -p_2| it follows that 01p1(x)p2(x)dx01p1(x)p3(x)dx+01p3(x)p2(x)dx\displaystyle \int_0^1|p_1(x)-p_2(x)|dx \leq \int_0^1|p_1(x)-p_3(x)|dx+\int_0^1|p_3(x)-p_2(x)|dx

Hence (P,d)\displaystyle (\mathcal{P},d) is a metric space.
Since the boundary of X is closed, it is complete.

c)
1) d((a,b),(c,d))=adbc+ac=cbda+ca=d((c,d),(a,b)).\displaystyle d((a,b),(c,d))= |ad-bc|+|a-c| = |cb-da|+|c-a| = d((c,d),(a,b)).

2) Clearly d((a,b),(c,d))=adbc+ac>0\displaystyle d((a,b),(c,d))=|ad-bc|+|a-c| > 0. Also d((a,b),(a,b))=abba+aa=0\displaystyle d((a,b),(a,b))= |ab-ba|+|a-a|=0.

3) Let x=(a,b),y=(c,d),z=(a,f).\displaystyle x = (a,b), y=(c,d), z=(a,f). Then we need to show that d((a,b),(c,d))d((a,b),(a,f))+d((a,f),(c,d))    x,y,zR\displaystyle d((a,b),(c,d)) \leq d((a,b),(a,f))+d((a,f),(c,d)) \;\forall\; x,y,z \in \mathbb{R}
By doing some algebra we see that this amounts to showing that adbcafab+adcf\displaystyle |ad-bc|\leq|af-ab|+|ad-cf|.
After a bit more algebra we find (assuming I didn't make a mistake) that
adbc+bccf+afabafab+adcf    adbcafab+adcf\displaystyle |ad-bc|+|bc-cf+af-ab| \leq |af-ab|+|ad-cf| \implies |ad-bc| \leq |af-ab|+|ad-cf|

Hence (R2,d)\displaystyle (\mathbb{R}^2,d) is a metric space.
This is also complete for similar reasons to a).
 
Okay cool. Thanks.

So for:

a)
Metric Space - Yes.
Complete - Yes

Reason:
Suppose that n=2\displaystyle n=2
Then xixj\displaystyle |x_i -x_j| and yiyj,  i,j=1,...,nN\displaystyle |y_i-y_j|,\; i,j=1,...,n \in \mathbb{N} are both Cauchy and both converge to some element in R2\displaystyle \mathbb{R}^2. This result applies for any nN\displaystyle n\in \mathbb{N}.
Hence (Rn,d)\displaystyle (\mathbb{R}^n,d) is complete.

b)
Metric Space - Yes.
Complete - No.

Take p1(x)=\displaystyle p1(x) = nth order Taylor polynomial for exp(x) and p2(x)=\displaystyle p_2(x)= the zero polynomial. Then p1p2\displaystyle p1-p2 is Cauchy and converges to exp(x) which is not a polynomial. Hence \displaystyle \exists a Cauchy sequence that does not converge to a point in X.
Therefore (P,d)\displaystyle (\mathcal{P},d) is not complete.

c)
Metric Space - No.
Complete - N/A

In condition 2) of the definition for a metric space, suppose that a=c=0\displaystyle a=c=0 and bdR\displaystyle b \neq d \in \mathbb{R}. Then d(0,b),(0,d))=0db0+00=0\displaystyle d(0,b),(0,d))=|0d-b0|+|0-0| = 0 but (0,b)(0,d)\displaystyle (0,b)\neq (0,d)
So (R2,d)\displaystyle (\mathbb{R}^2,d) is not a metric space.
 
Top