please help parameteic equation maths

deviany

New member
Joined
Jul 6, 2020
Messages
2
1594087843519157316541.jpg
number 9 part 2 and 3. if its parallel to x axis then the gradient would be 0. but how can i proof it? i triedy dy/dx=0 but i got t=2... which part i am wrong?
 
For 8(iii) you need to use the definition of v: haven't you learnt that v=(dx/dt,dy/dt)?
For 9(ii) how did you get t=2? If you substitute t=2 in your equation dy/dx you never will get 0.
Try to find the t that corresponds to x=1, y=3.
 
Last edited:
in 9ii, the question asks you to show that at (1,3) the tangent to the curve is parallel to the x-axis, that is, show the slope is 0 at (1,3).
(evaluate something to get 0 and you are done)

what you tried to do is part iii. (solve equation set equal to 0)
 
Thank you! That helps a lot.
Problem 9 gives parametric equations x=e3t\displaystyle x= e^{3t}, y=t2et+3\displaystyle y= t^2e^t+ 3. dx/dt=3e3t\displaystyle dx/dt= 3e^{3t}, dy/dt=2tet+t2et=et(t2+2t)\displaystyle dy/dt= 2te^t+ t^2e^t= e^t(t^2+ 2t). dydx=dydtdxdt=et(t2+2t)3e3t=(t2+2t)e2t\displaystyle \frac{dy}{dx}= \frac{\frac{dy}{dt}}{\frac{dx}{dt}}= \frac{e^t(t^2+ 2t)}{3e^{3t}}= (t^2+ 2t)e^{-2t}. That is the same as the given t(t+2)3e2t\displaystyle \frac{t(t+ 2)}{3e^{2t}}.
At x= 1, y= 3, x=1=e3t\displaystyle x= 1= e^{3t} so t= 0 (as a check y=02e0+3=3\displaystyle y= 0^2e^0+ 3= 3). With t= 0, the derivative, whether we use (t2+2t)e2t\displaystyle (t^2+ 2t)e^{-2t} or t(t+2)3e2t\displaystyle \frac{t(t+ 2)}{3e^{2t}}, is 0 so the tangent line is horizontal, parallel to the x- axis.
The tangent line will be horizontal wherever dy/dx=t(t+2)3e2t=0\displaystyle dy/dx= \frac{t(t+ 2)}{3e^{2t}}= 0. A fraction is 0 if and only if the numerator is 0: t(t+ 2)= 0 so either t= 0 or t= -2. The other point where the tangent line is parallel to the x-axis is (e3(2),(2)2e2+3)=(e6,4e2+3)\displaystyle \left(e^{3(-2)}, (-2)^2e^{-2}+ 3\right)= (e^{-6}, 4e^{-2}+ 3).
 
Top