Algebra Problem of the Day-2

(2x)3+(3x)32x3x(2x+3x)=76\displaystyle \frac{(2^x)^3+(3^x)^3}{2^x3^x(2^x+3^x)} = \frac{7}{6}

Letting a=2x\displaystyle a=2^x and b=3x\displaystyle b=3^x for ease of typing!!

(a3+b3)ab(a+b)=76\displaystyle \frac{(a^3+b^3)}{ab(a+b)} =\frac{7}{6}

(a+b)(a2ab+b2)ab(a+b)=76\displaystyle \frac{(a+b)(a^2-ab+b^2)}{ab(a+b)} = \frac{7}{6}

a2ab+b2ab=76\displaystyle \frac{a^2-ab+b^2}{ab} = \frac{7}{6} since a+b0\displaystyle a+b\neq0

6a26ab+6b2=7ab\displaystyle 6a^2 -6ab +6b^2 =7ab

6a213ab+6b2=0\displaystyle 6a^2 - 13ab+6b^2=0

(3a2b)(2a3b)=0\displaystyle (3a-2b)(2a-3b)=0

3a2b=0\displaystyle 3a-2b=0 OR 2a3b=0\displaystyle 2a-3b=0 OR a=b=0\displaystyle a=b=0 but a0\displaystyle a\neq0 and b0\displaystyle b\neq0

ab=23\displaystyle \frac{a}{b}=\frac{2}{3} OR ab=32\displaystyle \frac{a}{b}=\frac{3}{2}

2x3x=23\displaystyle \frac{2^x}{3^x} =\frac{2}{3} OR 2x3x=32\displaystyle \frac{2^x}{3^x}=\frac{3}{2}

(23)x=23\displaystyle (\frac{2}{3})^x =\frac{2}{3} OR (23)x=32\displaystyle (\frac{2}{3})^x=\frac{3}{2}

x=1\displaystyle x=1 OR x=1\displaystyle x=-1
 
(2x)3+(3x)32x3x(2x+3x)=76\displaystyle \frac{(2^x)^3+(3^x)^3}{2^x3^x(2^x+3^x)} = \frac{7}{6}

Letting a=2x\displaystyle a=2^x and b=3x\displaystyle b=3^x for ease of typing!!

(a3+b3)ab(a+b)=76\displaystyle \frac{(a^3+b^3)}{ab(a+b)} =\frac{7}{6}

(a+b)(a2ab+b2)ab(a+b)=76\displaystyle \frac{(a+b)(a^2-ab+b^2)}{ab(a+b)} = \frac{7}{6}

a2ab+b2ab=76\displaystyle \frac{a^2-ab+b^2}{ab} = \frac{7}{6} since a+b0\displaystyle a+b\neq0

6a26ab+6b2=7ab\displaystyle 6a^2 -6ab +6b^2 =7ab

6a213ab+6b2=0\displaystyle 6a^2 - 13ab+6b^2=0

(3a2b)(2a3b)=0\displaystyle (3a-2b)(2a-3b)=0

3a2b=0\displaystyle 3a-2b=0 OR 2a3b=0\displaystyle 2a-3b=0 OR a=b=0\displaystyle a=b=0 but a0\displaystyle a\neq0 and b0\displaystyle b\neq0

ab=23\displaystyle \frac{a}{b}=\frac{2}{3} OR ab=32\displaystyle \frac{a}{b}=\frac{3}{2}

2x3x=23\displaystyle \frac{2^x}{3^x} =\frac{2}{3} OR 2x3x=32\displaystyle \frac{2^x}{3^x}=\frac{3}{2}

(23)x=23\displaystyle (\frac{2}{3})^x =\frac{2}{3} OR (23)x=32\displaystyle (\frac{2}{3})^x=\frac{3}{2}

x=1\displaystyle x=1 OR x=1\displaystyle x=-1
Well done! ???


As for Subhotosh Khan, you'll get a participant medal for your paltry attempt. Maybe next time. ?
 
Letting a=2x\displaystyle a=2^x and b=3x\displaystyle b=3^x for ease of typing!!
I was about to post my solution. However, I won't bother after seeing yours since it's pretty identical to mine. And you beat me by 45 mins - also I didn't make the "ease of typing" substitution - brilliant!
 
It appears that making the substitution actually made this problem harder (in this case)

8x+27x12x+18x=(2x)3+(3x)36x(2x+3x)=(2x)2(2x)(3x)+(3x)22x3x=(2/3)x1+(3/2)x=76or(2/3)x+(3/2)x=136\displaystyle \dfrac{8^x +27^x}{12^x + 18^x}=\dfrac{(2x)^3 + (3x)^3}{6^x(2^x + 3^x)} = \dfrac{(2^x)^2 -(2^x)(3^x) +(3^x)^2}{2^x3^x} =(2/3)^x - 1 +(3/2)^x = \dfrac{7}{6} or (2/3)^x +(3/2)^x = \dfrac{13}{6}

It is easily seen (luckily!) that since 2/3 + 3/2 = 13/6 the answers are x=1 or -1
 
It appears that making the substitution actually made this problem harder (in this case)

8x+27x12x+18x=(2x)3+(3x)36x(2x+3x)=(2x)2(2x)(3x)+(3x)22x3x=(2/3)x1+(3/2)x=76or(2/3)x+(3/2)x=136\displaystyle \dfrac{8^x +27^x}{12^x + 18^x}=\dfrac{(2x)^3 + (3x)^3}{6^x(2^x + 3^x)} = \dfrac{(2^x)^2 -(2^x)(3^x) +(3^x)^2}{2^x3^x} =(2/3)^x - 1 +(3/2)^x = \dfrac{7}{6} or (2/3)^x +(3/2)^x = \dfrac{13}{6}

It is easily seen (luckily!) that since 2/3 + 3/2 = 13/6 the answers are x=1 or -1
Yeah sure, but does that tell you that they are the ONLY solutions?
 
Top