Algebra Problem of the Day

BigBeachBanana

Senior Member
Joined
Nov 19, 2021
Messages
2,277
Prove that axby=0a^x-b^y=0, where x=logab,y=logbax=\sqrt{\log_ab},\,y = \sqrt{\log_{b}a} ; a,b>0  &  a,b1.a,b >0\,\, \& \,\, a,b \neq 1.
 
I managed to follow @Steven G 's solution, but I'd have used the word "therefore" instead of "or" here...
So xy = 1 or y=1/x = 1/sqrt(logab)
...since this line confused me for a ridiculous amount of time :ROFLMAO:

Here's my (probably slow) approach...
alogab=blogba a^{\sqrt{\log_{a}{b}}} = b^{\sqrt{\log_{b}{a}}} ln(alogab)=ln(blogba) \ln\left(a^{\sqrt{\log_{a}{b}}}\right) = \ln \left(b^{\sqrt{\log_{b}{a}}}\right) logablnalogbalnb=0 \sqrt{ \log_{a}{b}} \cdot \ln a - \sqrt{\log_{b}{a}} \cdot \ln b= 0

L.H.S=logablnalogbalnb \text{L.H.S} = \sqrt{ \log_{a}{b}} \cdot \ln a - \sqrt{\log_{b}{a}} \cdot \ln b =lnblnalnalnalnblnb = \sqrt{\frac{\ln b}{\ln a}} \cdot \ln a - \sqrt{ \frac{\ln a}{\ln b}} \cdot \ln b=lnblnalnalnb= \sqrt{\ln b \cdot \ln a} - \sqrt{ \ln a \cdot \ln b } =0=R.H.S=0 = \text{R.H.S}
 
Last edited:
Yes the fast way is to notice y=1x    ax=b1x    ax2=by=\frac{1}{x} \implies a^x=b^{\frac{1}{x}}\implies a^{x^2}=b, where x2=logabx^2=\log_a{b}.
It follows alogab=b.a^{\log_a{b}}=b.
 
Last edited:
If you keep using those big words you're going to get yourself in trouble! :)
Therefore a continued violation would necessitate that my displacement from the interception of two orthogonal planes (both possessing a normal with negligible z components) ought to be reduced in magnitude?
So if I keep on, then I'm off to the corner? :ROFLMAO:
 
Top