Calculus I Limits

CalebCarrots

New member
Joined
Jan 20, 2012
Messages
1
My question is on the procedure for finding the limit of trigonometric functions, specifically the problems: #1 find lim as (θ-->0) of sin(θ)/ (θ)+tan(θ). The second problem is find lim as (t-->0) of (tan6t)/(sin2t).


I am more interested in conceptualizing the information, the answers are not even necessary. Create a problem and show me the methods, and I would be greatly appreciative.:D
 
For #1, I will use x instead of theta to mitigate typing.

limx0sinxx+tanx\displaystyle \displaystyle \lim_{x\to 0}\frac{sinx}{x+tanx}

=limx0sinxcosxxcosx+sinx\displaystyle \displaystyle =\lim_{x\to 0}\frac{sinx cosx}{xcosx+sinx}

Note that as x0\displaystyle x\to 0, then sinxx\displaystyle sinx\approx x and cosx1x22\displaystyle cosx\approx 1-\frac{x^{2}}{2}

If we sub these into the above, we get:

limx0x(1x22)x(1x22)+x=limx0x22x24\displaystyle \displaystyle\lim_{x\to 0}\frac{x(1-\frac{x^{2}}{2})}{x(1-\frac{x^{2}}{2})+x}=\lim_{x\to 0}\frac{x^{2}-2}{x^{2}-4}

Now, see the limit?.
 
For #1, I will use x instead of theta to mitigate typing.

limx0sinxx+tanx\displaystyle \displaystyle \lim_{x\to 0}\frac{sinx}{x+tanx}

=limx0sinxcosxxcosx+sinx\displaystyle \displaystyle =\lim_{x\to 0}\frac{sinx cosx}{xcosx+sinx}

Note that as x0\displaystyle x\to 0, then sinxx\displaystyle sinx\approx x and cosx1x22\displaystyle cosx\approx 1-\frac{x^{2}}{2}

If we sub these into the above, we get:

limx0x(1x22)x(1x22)+x=limx0x22x24\displaystyle \displaystyle\lim_{x\to 0}\frac{x(1-\frac{x^{2}}{2})}{x(1-\frac{x^{2}}{2})+x}=\lim_{x\to 0}\frac{x^{2}-2}{x^{2}-4}

Now, see the limit?.

I think a student at this level would not have access to the second result. However, suppose you invert the expression. (invert it back and the end, of course)
sin x​
-------------------
x + tan x​
Inverted:
x + tan x
---------
sin x
x tan x
----- + --------
sin x sin x
sin x / cos x​
1 + -------------
sin x​
1​
1 + ------------
cos x​
1 + 1 = 2
 
Last edited:
Note:  limx0(tanxx) =\displaystyle Note: \ \ \displaystyle\lim_{x\to 0}\bigg(\frac{tanx}{x} \bigg)\ =

limx0(xtanx) = 1\displaystyle \displaystyle\lim_{x\to 0} \bigg(\frac{x}{tanx} \bigg)\ = \ 1

------------------------------------------



limx0(sinxx+tanx)\displaystyle \displaystyle \lim_{x\to 0}\bigg(\frac{sinx}{x+tanx}\bigg)


Divide every term by tanx:


=limx0(cosxxtanx+1)\displaystyle \displaystyle =\lim_{x\to 0}\bigg(\frac{cosx}{\frac{x}{tanx} + 1}\bigg)


=11+1\displaystyle = \dfrac{1}{1 + 1}


= 12\displaystyle = \ \dfrac{1}{2}
 
Top