You have
14(2x+4)6(3x−2)5+15(2x+4)7(3x−2)4.
Do you see that there is a "(2x+ 4)" in both terms? One is to the 6th power and the other is to the 7th power.
(2x+4)7=(2x+4)6(2x+4) so there is
(2x+4)6 in both terms and we can factor that out, leaving 2x+ 4 to the first power in the second term.
Do you see that there is a "(3x- 2)" in both terms? One is to the 5th power and the other is to the 4th power.
(3x−2)5=(3x−2)4(3x−3) so there is
(3x−2)4 in both terms so we can factor that out, leaving 3x- 2 to the first power in the first term.
14(2x+4)6(3x−2)5+15(2x+4)7(3x−2)4=(2x+4)6(3x−2)4[(14(3x−2)+15(2x+4)].
Now we need to "combine" what was left:
14(3x- 2)+ 15(2x+ 4)= 42x- 28+ 30x+ 60= 72x+ 32 so
14(2x+4)6(3x−2)5+15(2x+4)7(3x−2)4=(2x+4)6(3x−2)4(72x+32).
You could, if you like, also take common factors out of the coefficients. 2x+ 4= 2(x+ 2) so
(2x+4)6=26(x+2)6=64(x+2)5. 72= 8(9) and 32= 4(8) so 72x+ 32= 8(9x+ 4). 64(8)= 512.
14(2x+4)6(3x−2)5+15(2x+4)7(3x−2)4=512(x+2)6(3x−2)4(9x+4).