Help Please

Tinkermom

New member
Joined
Sep 17, 2010
Messages
17
The graph of the function f(x)=ax^2 + bx + c has vertex at (1,4) and passes through the point (-1,-8). Find a b c.
 
f(x) = ax2+bx+c, a parabola, given, find a,b, and c given vertex = (1,4) and f(x) passes\displaystyle f(x) \ = \ ax^2+bx+c, \ a \ parabola, \ given, \ find \ a,b, \ and \ c \ given \ vertex \ = \ (1,4) \ and \ f(x) \ passes

through point (1,8).\displaystyle through \ point \ (-1,-8).

Hence since axis of symmetry, x =1, gives another point (3,8)\displaystyle Hence \ since \ axis \ of \ symmetry, \ x \ =1, \ gives \ another \ point \ (3,-8)

f(1) = 4 = a+b+c\displaystyle f(1) \ = \ 4 \ = \ a+b+c

f(1) = 8 = ab+c\displaystyle f(-1) \ = \ -8 \ = \ a-b+c

f(3) = 8 = 9a+3b+c\displaystyle f(3) \ = \ -8 \ = \ 9a+3b+c

Solving the system gives a = 3, b = 6, and c = 1.\displaystyle Solving \ the \ system \ gives \ a \ = \ -3, \ b \ = \ 6, \ and \ c \ = \ 1.

See graph.\displaystyle See \ graph.

[attachment=0:1isidolz]fff.jpg[/attachment:1isidolz]
 
Hello, Tinkermom!

The graph of the function f(x)=ax2+bx+c has its vertex at (1,4)and passes through the point (1,8).\displaystyle \text{The graph of the function }\,f(x)\:=\:ax^2 + bx + c\:\text{ has its vertex at }(1,4)\,\text{and passes through the point }(-1,-8).

Find a,b and c.\displaystyle \text{Find }a, b \text{ and } c.

The point (1,4) is on the graph:\displaystyle \text{The point }(1,4)\text{ is on the graph:}
. . f(1)=4:    a+b+c=4\displaystyle f(1) = 4:\;\; a + b + c \:=\:4 .[1]

\(\displaystyle \text{The point }(-1,-8)\text{ is on the graph:}}\)
. . f(1)=8:    ab+c=8\displaystyle f(-1) = -8: \;\;a - b + c \:=\:-8 .[2]

We know the vertix is at: x=b2a\displaystyle \text{We know the vertix is at: }\:x \:=\:\frac{-b}{2a}
. . So:   b2a=12a+b=0\displaystyle \text{So: }\;\frac{-b}{2a} \:=\:1 \quad\Rightarrow\quad 2a + b \:=\:0 .[3]


We have a system of equations:   a+b+c=4[1]ab+c=8[2]2a+b=0[3]\displaystyle \text{We have a system of equations: }\;\begin{array}{ccccccc}a + b + c &=& 4 & [1] \\ a - b + c &=& -8 & [2] \\ 2a + b \qquad &=& 0 & [3] \end{array}

Subtract [1] - [2]:   2b=12b=6\displaystyle \text{Subtract [1] - [2]: }\;2b \:=\:12 \quad\Rightarrow\quad b \:=\:6

Substitute into [3]:   2a+6=0a=3\displaystyle \text{Substitute into [3]: }\;2a + 6 \:=\:0 \quad\Rightarrow\quad a \:=\:-3

\(\displaystyle \text{Substitute into [1]: }\;-3 + 6 + c \:=\:4 \quae\Rightarrow\quad c \:=\:1\)


Therefore:   f(x)  =  3x2+6x+1\displaystyle \text{Therefore: }\;f(x) \;=\;-3x^2 + 6x + 1



Edit: Too slow . . . again!
.
 
Thank you. This confirms, I was on the right track. Just needed help putting it together.

Thanks again.
 
Top