Inequality proof verification

methodrequired

New member
Joined
Feb 20, 2022
Messages
1
Prove a+3b3a+b+b+3c3b+c+c+3a3c+a3   , a,b,c>0.\frac{a+3b}{3a+b}+\frac{b+3c}{3b+c}+\frac{c+3a}{3c+a} \geqslant 3 ~~~ , ~ \forall a,b,c >0 .

a+3b3a+b1+b+3c3b+c1+c+3a3c+a10\frac{a+3b}{3a+b}-1+\frac{b+3c}{3b+c}-1+\frac{c+3a}{3c+a}-1 \geqslant 0 ,​

(*)ba3a+b+cb3b+c+ac3c+a0.\frac{b-a}{3a+b} + \frac{c-b}{3b+c} + \frac{a-c}{3c+a} \geqslant 0 .
Assume WLOG abc a \le b \le c at the denominators then we have ba3a+b+cb3b+c+ac3c+a(ba)+(cb)+(ac)4c=0.\frac{b-a}{3a+b} + \frac{c-b}{3b+c} + \frac{a-c}{3c+a} \geqslant \frac{(b-a)+(c-b)+(a-c)}{4c} =0 .If not correct , how to proceed from (*) ?
 
I think you are correct. To make it slightly easier for the other tutors to agree (or disagree) with my appraisal I'll expand some of your working...

Prove a+3b3a+b+b+3c3b+c+c+3a3c+a3   , a,b,c>0.\frac{a+3b}{3a+b}+\frac{b+3c}{3b+c}+\frac{c+3a}{3c+a} \geqslant 3 ~~~ , ~ \forall a,b,c >0 .

a+3b3a+b1+b+3c3b+c1+c+3a3c+a10\frac{a+3b}{3a+b}-1+\frac{b+3c}{3b+c}-1+\frac{c+3a}{3c+a}-1 \geqslant 0 ,​

(a+3b3a+b3a+b3a+b)+(b+3c3b+c3b+c3b+c)+(c+3a3c+a3c+a3c+a)0\left( \frac{a+3b}{3a+b}-\frac{3a+b}{3a+b} \right) + \left(\frac{b+3c}{3b+c}-\frac{3b+c}{3b+c}\right)+ \left(\frac{c+3a}{3c+a}-\frac{3c+a}{3c+a} \right)\geqslant 0
2(ba)3a+b+2(cb)3b+c+2(ac)3c+a0\frac{2(b-a)}{3a+b} + \frac{2(c-b)}{3b+c} + \frac{2(a-c)}{3c+a} \geqslant 0
divide both sides of the inequality by two...

(*)ba3a+b+cb3b+c+ac3c+a0.\frac{b-a}{3a+b} + \frac{c-b}{3b+c} + \frac{a-c}{3c+a} \geqslant 0 .
Assume WLOG abc a \le b \le c at the denominators then we have

New statement:-

ba3a+b+cb3b+c+ac3c+aba3c+c+cb3c+c+ac3c+c\frac{b-a}{3a+b} + \frac{c-b}{3b+c} + \frac{a-c}{3c+a} \geqslant \frac{b-a}{3c+c} + \frac{c-b}{3c+c} + \frac{a-c}{3c+c}
the above is true because each denominator increases in value (or stays the same), which has the effect of lowering the value of every term (or leaving it the same). And since...

(ba)+(cb)+(ac)4c=0. \frac{(b-a)+(c-b)+(a-c)}{4c} =0 .

Then

ba3a+b+cb3b+c+ac3c+a0\frac{b-a}{3a+b} + \frac{c-b}{3b+c} + \frac{a-c}{3c+a} \geqslant 0
 
Last edited:
ba3a+b+cb3b+c+ac3c+aba3c+c+cb3c+c+ac3c+c\frac{b-a}{3a+b} + \frac{c-b}{3b+c} + \color{red}\frac{a-c}{3c+a}\color{black} \geqslant \frac{b-a}{3c+c} + \frac{c-b}{3c+c} + \color{red}\frac{a-c}{3c+c}
the above is true because each denominator increases in value (or stays the same), which has the effect of lowering the value of every term (or leaving it the same). And since...
...actually I'm not sure that the above is always true since the numerators of the red terms are negative (or zero) :unsure:
 
Last edited:
Top