methodrequired
New member
- Joined
- Feb 20, 2022
- Messages
- 1
Prove 3a+ba+3b+3b+cb+3c+3c+ac+3a⩾3 , ∀a,b,c>0.
3a+ba+3b−1+3b+cb+3c−1+3c+ac+3a−1⩾0 ,
(*)3a+bb−a+3b+cc−b+3c+aa−c⩾0.
Assume WLOG a≤b≤c at the denominators then we have 3a+bb−a+3b+cc−b+3c+aa−c⩾4c(b−a)+(c−b)+(a−c)=0.If not correct , how to proceed from (*) ?