Linear transformation and matrix transformation

HelpNeeder

New member
Joined
Feb 17, 2021
Messages
33
"Every linear transformation is a matrix transformation."
This statement is false.

But in the book Linear Algebra and Its Applications there is written:
1617801037319.png

However, doesn't this mean that every linear transformation is a matrix transformation?

Thank you in advance.
 
That is explained in the linked post. In David Lay's book, you can see he is talking about a linear transformation [MATH]T:\mathbb{R}^n \rightarrow \mathbb{R}^m[/MATH]Your statement has no such restriction. It refers to linear transformations between any vector spaces, not just [MATH]\mathbb{R}^n \text{ and } \mathbb{R}^m[/MATH](Examples are given in the linked post. You need to read it all the way to the bottom of the page.)
 
Last edited:
I would say that every linear transformation can be represented by a matrix, but I would not say that every linear transformation is a linear transformation since which matrix represents the linear transformation depends upon the basis for the vector space.

You can define a linear transformation without a basis but a specific matrix requires a specific basis.
 
That says pretty much what I said.
"That said, there still is a way to "represent" T by a matrix."

The "T" referred to is the operation T(p)= p(0)x+ 3xp'(x) applied to the space or all polynomials of degree 3 or less.
That itself is NOT a matrix product but can be represented by one in a given basis. For example we can take as basis v1=1\displaystyle v_1= 1, v2=x\displaystyle v_2= x, v3=x2\displaystyle v_3= x^2, and v4=x3\displaystyle v_4= x^3.

Applying T to the basis vectors T(v1)=T(1)=1x+3x(0)=x\displaystyle T(v_1)= T(1)= 1x+ 3x(0)= x, T(v2)=T(x)=0x+3x(1)=3x=3v2\displaystyle T(v_2)= T(x)= 0x+ 3x(1)= 3x= 3v_2, T(v3)=T(x2)=0x+3x(2x)=6x2=6v3\displaystyle T(v_3)= T(x^2)= 0x+ 3x(2x)= 6x^2= 6v_3 and T(v4)=T(x3)=0x+3x(3x2)=9x3=9v4\displaystyle T(v_4)= T(x^3)= 0x+ 3x(3x^2)= 9x^3= 9v_4.

We can represent the basis "vector" 1 as [1000]\displaystyle \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, x as [0100]\displaystyle \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, x2\displaystyle x^2 as [0010]\displaystyle \begin{bmatrix} 0\\ 0 \\ 1 \\ 0 \end{bmatrix}, and x3\displaystyle x^3 as [0001]\displaystyle \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.

Write [a11a12a13a14a21a22a23a24a31a32a33a34a41a42a43a44]\displaystyle \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} as the matrix "representing" T.

Representing T(v1)=T(1)=x=v2\displaystyle T(v_1)= T(1)= x= v_2 we have [a11a12a13a14a21a22a23a24a31a32a33a34a41a42a43a44][[1000]=[a11a21a31a41]=[0100]\displaystyle \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}[\begin{bmatrix}1 \\ 0 \\ 0 \\ 0 \end{bmatrix}= \begin{bmatrix}a_{11} \\ a_{21} \\ a_{31} \\ a_{41}\end{bmatrix}= \begin{bmatrix}0 \\ 1 \\ 0 \\ 0\end{bmatrix} so we must have a11=0\displaystyle a_{11}= 0, a21=1\displaystyle a_{21}= 1, a31=0\displaystyle a_{31}= 0 and a41=0\displaystyle a_{41}= 0.

Representing T(v2)=T(x)=3x=3v2\displaystyle T(v_2)= T(x)= 3x= 3v_2 we have [a11a12a13a14a21a22a23a24a31a32a33a34a41a42a43a44][0100]=[a21a22a23a24]=[0300]\displaystyle \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}\begin{bmatrix}0 \\ 1 \\ 0 \\ 0 \end{bmatrix}= \begin{bmatrix} a_{21} \\ a_{22} \\ a_{23} \\ a_{24} \end{bmatrix}= \begin{bmatrix} 0 \\ 3 \\ 0 \\ 0 \end{bmatrix} so we must have a21=0\displaystyle a_{21}= 0, a22=3\displaystyle a_{22}= 3, a23=0\displaystyle a_{23}= 0, and a24=0\displaystyle a_{24}= 0.

Representing T(v3)=T(x2)=6x3=6v3\displaystyle T(v_3)= T(x^2)= 6x^3= 6v_3 we have [a11a12a13a14a21a22a23a24a31a32a33a34a41a42a43a44][0010]=\displaystyle \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}=[a31a32a33a34]=\displaystyle \begin{bmatrix}a_{31}\\ a_{32} \\ a_{33}\\ a_{34}\end{bmatrix}=[0060]\displaystyle \begin{bmatrix}0 \\ 0 \\ 6 \\ 0 \end{bmatrix} so a31=0\displaystyle a_{31}= 0, a32=0\displaystyle a_{32}= 0, a33=6\displaystyle a_{33}= 6, and a34=0\displaystyle a_{34}= 0.

Representing T(v4)=T(x3)=9x3=9v4\displaystyle T(v_4)= T(x^3)= 9x^3= 9v_4 we have [a11a12a13a14a21a22a23a24a31a32a33a34a41a42a43a44][0001]=[a41a42a43a44]=[0009]\displaystyle \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}\begin{bmatrix}0 \\ 0 \\ 0 \\ 1 \end{bmatrix}= \begin{bmatrix}a_{41} \\ a_{42} \\ a_{43}\\ a_{44}\end{bmatrix}= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 9 \end{bmatrix} so that a41=0\displaystyle a_{41}= 0, a42=0\displaystyle a_{42}= 0, a43=0\displaystyle a_{43}= 0, and a44=9\displaystyle a_{44}= 9.

Putting that all together the matrix representing T, in this basis, is
\(\displaystyle \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 9 \end{bmatrix}\(\displaystyle .\)\)
 
Top