minus times minus equals plus - Group theory ?

Frankenstein143

New member
Joined
May 17, 2021
Messages
22
Hello,
I want to understand why is minus times minus equals plus.

My thoughts:

We take the numbers 0,1,2 that are in |R. Each number (except 0) has an additive and multiplicative inverse.
For example, we take the number 2. The inverse of 2 is -2 (if we talk about addition). And the inverse of (-2) is -(-2) which is +2. Can it be used to explain why minus times minus equals 2?
But what is about -2(-2) how can it be explained?
 
But how to explain that negative number times a negative number equals a positive number?
The example with -(-2) is not that difficult to understand because we have two inverses there. But how to explain -2(-2) or -3(-4)?
 
But how to explain that negative number times a negative number equals a positive number?
The example with -(-2) is not that difficult to understand because we have two inverses there. But how to explain -2(-2) or -3(-4)?
(-3)(-4) = (-1)(3)(-1)(4) by definition of -1.

= (-1)(-1)(3)(4) by commutivity

=(-(-1))(3)(4) by negation

= (1)(3)(4) = (3)(4) by post 2 above.

-Dan
 
This is a pretty fundamental question, so it requires us to use even more fundamental ideas.
To attempt to prove this we need to go back to the basic axioms concerning the algebraic properties of real numbers.
I will attempt a proof here. (It is a proof, but being complicated, doesn't actually add much to understanding, I think)!
I will assume we are trying to prove that [MATH](-a)(-b)=ab[/MATH]
An abbreviated version:

Among other things, (1) uses that a number plus its negative, equals 0
(2) allows us to 'pull out' one negative in a multiplication,
which we then use twice to prove (3).

[MATH](1) \hspace1ex \boxed{-(-x)=x}\\ x+0=x\\ x+(-x + (-(-x))=x\\ (x+(-x))+(-(-x)))=x\\ 0+(-(-x))=x\\ -(-x)=x\\ \text{ }\\ (2) \hspace1ex \boxed{x(-y)=-(xy)}\\ x(-y)+xy=x(-y+y)\\ =x\cdot 0\\ =0\\ \therefore x(-y)+xy=0=-(xy)+xy\\ \therefore x(-y)=-(xy)\\ \text{ }\\ (3) \hspace1ex \boxed{(-a)(-b)=ab}\\ (-a)(-b)=-((-a)\cdot b) \text{ by (2)}\\ =-(-(ab))\text{ by (2)}\\ =ab \text{ by (1)}[/MATH]
The full version - a proper, rigorous proof, directly from the axioms.
The basic axioms of the real numbers wrt adding and multiplication:
A1 [MATH] \hspace1ex a+b=b+a[/MATH]A2 [MATH] \hspace1ex a+(b+c)=(a+b)+c[/MATH]A3 [MATH] \hspace1ex a+0=a[/MATH]A4 [MATH] \hspace1ex a+(-a)=0[/MATH]M1 [MATH] \hspace1ex a\cdot b=b \cdot a[/MATH]M2 [MATH] \hspace1ex a\cdot(b\cdot c)=(a\cdot b)\cdot c[/MATH]M3 [MATH] \hspace1ex a \cdot 1 = a[/MATH]M4 [MATH] \hspace1ex a \cdot \frac{1}{a}=1, a≠0[/MATH]D [MATH] \hspace1ex a \cdot (b+c)=a\cdot b + a \cdot c[/MATH]
[MATH](1) \hspace1ex \boxed{-(-x)=x}\\ x+0=x \hspace2ex A3\\ x+(-x+(-(-x)))=x \hspace2ex A4\\ (x+(-x))+(-(-x))=x \hspace2ex A2\\ 0+(-(-x))=x \hspace2ex A4\\ -(-x)+0=x \hspace2ex A1\\ -(-x)=x \hspace2ex A3\\ \text{ }\\ (2) \hspace1ex \boxed{x(-y)=-(xy)}\\ x(-y)+xy=x(-y+y) \hspace2ex D\\ =x(y+(-y)) \hspace2ex A1\\ =x\cdot 0 \hspace2ex A4\\ =x\cdot 0 +0 \hspace2ex A3\\ =x\cdot 0 + (x+(-x)) \hspace2ex A4\\ =(x\cdot 0 +x)+(-x) \hspace2ex A2\\ =(x\cdot 0+ x\cdot 1) + (-x) \hspace2ex M3\\ =x(0+1)+(-x) \hspace2ex D\\ =x(1+0)+(-x) \hspace2ex A1\\ =x\cdot 1 + (-x) \hspace2ex A3\\ =x+(-x) \hspace2ex M3\\ =0 \hspace2ex A4\\ \text{ }\\ \text{i.e. } x(-y)+xy=0 *\\ \text{ }\\ \text{Now}\\ x(-y)+0=x(-y) \hspace2ex A3\\ x(-y)+(xy+(-xy))=x(-y) \hspace2ex A4\\ (x(-y)+xy)+(-xy)=x(-y) \hspace2ex A2\\ 0+(-xy)=x(-y) \hspace2ex \text{ by *}\\ -xy+0=x(-y) \hspace2ex A1\\ -(xy)=x(-y) \hspace2ex A3\\ \text{Q.E.D.}\\ \text{ }\\ (1) \hspace1ex \boxed{-(-x)=x}\\ (2) \hspace1ex \boxed{x(-y)=-(xy)}\\ \text{ }\\ \text{ }\\ (3) \text{ Finally } \hspace1ex \boxed{(-a)(-b)=ab}\\ (-a)(-b)=-((-a)\cdot b) \hspace2ex \text{ by (2)}\\ =-(b(-a)) \hspace2ex M1\\ =-(-(ba)) \hspace2ex \text{ by (2)}\\ =ba \hspace2ex \text{ by (1)}\\ =ab \hspace2ex M1\\[/MATH]
 
Last edited:
For something a little more understandable:

Show that (-2)(3)=-6
(-2)(3)+6
=(-2)(3)+(2)(3)
=3(-2+2)
=0
i.e. (-2)(3)+6=0, therefore by uniqueness of inverse (-2)(3)=-6

Show (-2)(-3)=6
(-2)(-3)+(-6)
=(-2)(-3)+(-2)(3)
=(-2)((-3)+3)
=0
i.e. (-2)(-3)+(-6)=0, therefore by uniqueness of inverse (-2)(-3)=6

or if you don't like uniqueness of inverse:

Show that (-2)(3)=-6
(-2)(3)
=(-2)(3)+6+(-6)
=(-2)(3)+(2)(3)+(-6)
=3(-2+2)+(-6)
=0+(-6)
=-6

Show (-2)(-3)=6
(-2)(-3)
=(-2)(-3)+(-6)+6
=(-2)(-3)+(-2)(3)+6 (by the above work)
=(-2)((-3)+3)+6
=0+6
=6
 
Top