Determine the squar roots

1- square root3j.
Let's write as a mathematician would: \(\displaystyle 1-\sqrt3~i\).
\(\displaystyle 1-\sqrt3~i=2[\cos(-\pi/3)+i\sin(-\pi/3)]\)

So one square root is \(\displaystyle \sqrt2[\cos(-\pi/6)+i\sin(-\pi/6)]\)
How do we get the other? Hint \(\displaystyle \pi\) is needed.
 
Hello, poplap!

I hope I understood the question . . .


\(\displaystyle \text{Find the square root of: }\:1 - i\sqrt{3}\)

Let: .\(\displaystyle a + bi \:=\:\sqrt{1 - i\sqrt{3}}\) ..where \(\displaystyle a\) and \(\displaystyle b\) are real.

Then: .\(\displaystyle (a + bi)^2 \:=\:1 - i\sqrt{3} \quad\Rightarrow\quad (a^2-b^2) + 2abi \:=\:1-i\sqrt{3}\)

Equate real and imaginary components: .\(\displaystyle \begin{Bmatrix}a^2 - b^2 \:=\:1 & [1] \\ 2ab \:=\:\text{-}\sqrt{3} & [2] \end{Bmatrix}\)

From [2]: .\(\displaystyle b \:=\:\text{-}\dfrac{\sqrt{3}}{2a}\;\;[3]\)

Substitute into [1]: .\(\displaystyle a^2 - \left(\text{-}\dfrac{\sqrt{3}}{2a}\right)^2 \:=\:1 \quad\Rightarrow\quad a^2 - \dfrac{3}{4a^2} \:=\:1\)

. . \(\displaystyle 4a^4 - 4a^2 - 3 \:=\:0 \quad\Rightarrow\quad (2a^2 + 1)(2a^2-3) \:=\:0 \)


We have two equations to solve:

. . \(\displaystyle 2a^2 + 1 \:=\:0 \quad\Rightarrow\quad a^2 \:=\:\text{-}\frac{1}{2} \;\;\text{ but }a\text{ must be real.}\)

. . \(\displaystyle 2a^2 - 3 \:=\:0 \quad\Rightarrow\quad a^2 \:=\:\frac{3}{2} \quad\Rightarrow\quad a \:=\:\pm\dfrac{\sqrt{3}}{\sqrt{2}} \)

Substitute into [3]: .\(\displaystyle b \:=\:-\dfrac{\sqrt{3}}{2(\pm\frac{\sqrt{3}}{\sqrt{2}})} \:=\:\mp\dfrac{1}{\sqrt{2}}\)

Hence: .\(\displaystyle a + bi \;=\;\pm\dfrac{\sqrt{3}}{\sqrt{2}} + \mp\dfrac{1}{\sqrt{2}}i \)


Therefore: .\(\displaystyle \sqrt{1-i\sqrt{3}} \;=\;\pm\left(\dfrac{\sqrt{3} - i}{\sqrt{2}}\right)\)
 
Top