This seems to be a very simple equation...but somehow the solution is eluding me. I have tried again and again and can't get it to come out right. lIt is easy to see what the answer should be without working it out. But when I try to work it out, Mr Right doesn't show up.
This seems to be a very simple equation...but somehow the solution is eluding me. I have tried again and again and can't get it to come out right. lIt is easy to see what the answer should be without working it out. But when I try to work it out, Mr Right doesn't show up.
When you square both sides, you have to square each entire side -- not just each term on each side.
The square of m+4+m−4 is not m+42+m−42, but (m+4+m−4)2. Do you see the difference?
Doing that will not simplify the equation. What you have to do is to isolate one radical (move the other to the right side), and then square each side.
So the equation, after squaring both sides, is 2m+2m2−16=16. Rewrite this as m2−16=8−m and square both sides again to get an equation for m.
Caution: While any solution to the original equation must satisfy the new equation, squaring both sides of an equation can introduce "spurious solutions"- solutions to the new equation that do not satisfy the original equation. Be sure to check any solutions to your final equation in the original equation!
This seems to be a very simple equation...but somehow the solution is eluding me. I have tried again and again and can't get it to come out right. lIt is easy to see what the answer should be without working it out. But when I try to work it out, Mr Right doesn't show up.
When you square both sides, you have to square each entire side -- not just each term on each side.
The square of m+4+m−4 is not m+42+m−42, but (m+4+m−4)2. Do you see the difference?
Doing that will not simplify the equation. What you have to do is to isolate one radical (move the other to the right side), and then square each side.
I will look at this more closely in the morning but I see what is being said..and also, I know that squaring this type of problem with all the radicals on one side is not a means to an easy life. In fact I did try to move one of the radical terms to the right but somehow things seemed to end up exactly the same. But I will go at this again tomorrow and keep what you say in mind. Thanks for pointing out the problem. I think I did it this way in the hope of avoiding a messy FOIL.
So the equation, after squaring both sides, is 2m+2m2−16=16. Rewrite this as m2−16=8−m and square both sides again to get an equation for m.
Caution: While any solution to the original equation must satisfy the new equation, squaring both sides of an equation can introduce "spurious solutions"- solutions to the new equation that do not satisfy the original equation. Be sure to check any solutions to your final equation in the original equation!
Thanks for working through it...I will get back to this in the morning when my brain comes back from the dead. I do know about the fdalse solution pitfall, and have actually fallen into it more than once.
No, this is not correct. First when you moved sqrt(m+4) to the other side you failed to change the sign. 2nd mistake is that you got a solution to sqrt(m+4) = -3 !! The sqrt of nothing is ever negative. Go back and fix your mistakes.
Five is right. But along the way, two mistakes are made that cancel one another out. Getting the right answer in an invalid way doesn't count as correct.
No, this is not correct. First when you moved sqrt(m+4) to the other side you failed to change the sign. 2nd mistake is that you got a solution to sqrt(m+4) = -3 !! The sqrt of nothing is ever negative. Go back and fix your mistakes.
Yes, I see that now. I mean, I see that I forgot to change the sign when I switched the radical over to the right. That is a huge mistake right there and yet...the answer came out right. So....I must either have done something else that cancelled that error or maybe the nature of this type of problem is such that flukes of this sort are, if not likely, yet still possible. Anyway, tomorrow I will have another lunge at this beast, cuz it ain't dead yet!
This site uses cookies to help personalise content, tailor your experience and to keep you logged in if you register.
By continuing to use this site, you are consenting to our use of cookies.