logistic_guy
Full Member
- Joined
- Apr 17, 2024
- Messages
- 621
here is the question
Solve X′=⎣⎢⎡1−22−21−22−21⎦⎥⎤X.
my attemb
Z=A−λI=⎣⎢⎡1−22−21−22−21⎦⎥⎤−λ⎣⎢⎡100010001⎦⎥⎤=⎣⎢⎡1−22−21−22−21⎦⎥⎤+⎣⎢⎡−λ000−λ000−λ⎦⎥⎤=⎣⎢⎡1−λ−22−21−λ−22−21−λ⎦⎥⎤
det(Z)=(1−λ)[(1−λ)(1−λ)−(−2)(−2)]−−2[(−2)(1−λ)−(−2)(2)]+2[(−2)(−2)−(1−λ)(2)]
=(1−λ)[1−λ−λ+λ2−4]+2[−2+2λ+4]+2[4−2+2λ]
=(1−λ)[−2λ+λ2−3]+2[2λ+2]+2[2+2λ]
=−2λ+λ2−3+2λ2−λ3+3λ+4λ+4+4+4λ
=9λ+3λ2−λ3+5=0
this mean
λ3−3λ2−9λ−5=0
i'm strugle to solve degree 3 so i learn rational root theorem
this give me possible rational roots ±1 and ±5
testing one by one
λ(1)=13−3(1)2−9(1)−5=1−3−9−5=−16=0
λ(−1)=(−1)3−3(−1)2−9(−1)−5=−1−3+9−5=0
so (λ+1) is factor
λ+1λ3−3λ2−9λ−5=λ2−4λ−5 i don't know how to write long division steps in latex
i've get (λ+1)(λ2−4λ−5)=(λ+1)(λ+1)(λ−5)=(λ+1)2(λ−5)=0
this mean λ1=λ2=−1 and λ3=5
i get the same problem as before
X1=X2
this give me only two solutions X1 and X3
but i need three solutions
Solve X′=⎣⎢⎡1−22−21−22−21⎦⎥⎤X.
my attemb
Z=A−λI=⎣⎢⎡1−22−21−22−21⎦⎥⎤−λ⎣⎢⎡100010001⎦⎥⎤=⎣⎢⎡1−22−21−22−21⎦⎥⎤+⎣⎢⎡−λ000−λ000−λ⎦⎥⎤=⎣⎢⎡1−λ−22−21−λ−22−21−λ⎦⎥⎤
det(Z)=(1−λ)[(1−λ)(1−λ)−(−2)(−2)]−−2[(−2)(1−λ)−(−2)(2)]+2[(−2)(−2)−(1−λ)(2)]
=(1−λ)[1−λ−λ+λ2−4]+2[−2+2λ+4]+2[4−2+2λ]
=(1−λ)[−2λ+λ2−3]+2[2λ+2]+2[2+2λ]
=−2λ+λ2−3+2λ2−λ3+3λ+4λ+4+4+4λ
=9λ+3λ2−λ3+5=0
this mean
λ3−3λ2−9λ−5=0
i'm strugle to solve degree 3 so i learn rational root theorem
this give me possible rational roots ±1 and ±5
testing one by one
λ(1)=13−3(1)2−9(1)−5=1−3−9−5=−16=0
λ(−1)=(−1)3−3(−1)2−9(−1)−5=−1−3+9−5=0
so (λ+1) is factor
λ+1λ3−3λ2−9λ−5=λ2−4λ−5 i don't know how to write long division steps in latex

i've get (λ+1)(λ2−4λ−5)=(λ+1)(λ+1)(λ−5)=(λ+1)2(λ−5)=0
this mean λ1=λ2=−1 and λ3=5
i get the same problem as before

this give me only two solutions X1 and X3
