D dkarolasz Junior Member Joined Jun 6, 2007 Messages 53 Jun 6, 2007 #1 5 2 3 ____+_________=____ x+6 x2 +7x+6 x=1 I got up to 5 2 3 ____+__________=_____ x+6 (x+1)(x+6) x+1 I think the next step is 5(x+1) 2 3(x+6) ______+__________=_______ x+6 (x+1)(x+6) x+1 then i'm not sure
5 2 3 ____+_________=____ x+6 x2 +7x+6 x=1 I got up to 5 2 3 ____+__________=_____ x+6 (x+1)(x+6) x+1 I think the next step is 5(x+1) 2 3(x+6) ______+__________=_______ x+6 (x+1)(x+6) x+1 then i'm not sure
S soroban Elite Member Joined Jan 28, 2005 Messages 5,584 Jun 6, 2007 #2 Re: equations??? Hello, dkarolasz! Since this is an equation, the work is even easier . . . \(\displaystyle \L\frac{5}{x\,+\,6} \,+\,\frac{2}{x^2\,+\,7x\,+\,6}\;=\;\frac{3}{x\,+\,1}\) Click to expand... Multiply through by the common denominator: \(\displaystyle (x\,+\,1)(x\,+\,6)\) \(\displaystyle \L(x\,+\,1)(x\,+\,6)\cdot\frac{5}{x\,+\,6}\,+\,(x\,+\,1)(x\,+\,6)\cdot\frac{2}{(x\,+\,1)(x\,+\,6)} \;=\;(x\,+\,1)(x\,+\,6)\cdot\frac{3}{x\,+\,1}\) Reduce: \(\displaystyle \L\:5(x\,+\,1)\,+\,2\;=\;3(x\,+\,6)\) . . . . . . . . \(\displaystyle \L 5x\,+\,5\,+\,2 \;=\;3x\,+\,18\) . . . . . . . . . . . . . . . .\(\displaystyle \L 2x \;=\;11\) . . . . . . . . . . . . . . . . .\(\displaystyle \L x \;=\;\frac{11}{2}\)
Re: equations??? Hello, dkarolasz! Since this is an equation, the work is even easier . . . \(\displaystyle \L\frac{5}{x\,+\,6} \,+\,\frac{2}{x^2\,+\,7x\,+\,6}\;=\;\frac{3}{x\,+\,1}\) Click to expand... Multiply through by the common denominator: \(\displaystyle (x\,+\,1)(x\,+\,6)\) \(\displaystyle \L(x\,+\,1)(x\,+\,6)\cdot\frac{5}{x\,+\,6}\,+\,(x\,+\,1)(x\,+\,6)\cdot\frac{2}{(x\,+\,1)(x\,+\,6)} \;=\;(x\,+\,1)(x\,+\,6)\cdot\frac{3}{x\,+\,1}\) Reduce: \(\displaystyle \L\:5(x\,+\,1)\,+\,2\;=\;3(x\,+\,6)\) . . . . . . . . \(\displaystyle \L 5x\,+\,5\,+\,2 \;=\;3x\,+\,18\) . . . . . . . . . . . . . . . .\(\displaystyle \L 2x \;=\;11\) . . . . . . . . . . . . . . . . .\(\displaystyle \L x \;=\;\frac{11}{2}\)