A^2,is a orthogonal matrix,is A a orthogonal matrix?

muzhiqingfeng

New member
Joined
Dec 25, 2009
Messages
8
A^2,is a orthogonal matrix,is A a orthogonal matrix?
If this is not true ,in which case it is true?
 
The product of orthogonal matrices is orthogonal

They preserve orthogonality and thus form a group.

So, if A is orthogonal, then A^2 is also orthogonal.

Assume that Ax=x\displaystyle ||Ax||=||x|| for all x in R^n. So, we have

AxAy=14Ax+Ay214AxAy2=14A(x+y)214A(xy)2=14x+y214xy2=xy\displaystyle Ax\cdot Ay=\frac{1}{4}||Ax+Ay||^{2}-\frac{1}{4}||Ax-Ay||^{2}=\frac{1}{4}||A(x+y)||^{2}-\frac{1}{4}A(x-y)||^{2}=\frac{1}{4}||x+y||^{2}-\frac{1}{4}||x-y||^{2}=x\cdot y

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Let's say RmW\displaystyle R^{m}\rightarrow W be the orthogonal projection of Rm\displaystyle R^{m} onto a subspace W.

Let's say we have [P]=A(ATA)1AT\displaystyle [P]=A(A^{T}A)^{-1}A^{T}

where A is any matrix formed using a set of basis vectors for W as its column vectors.

Therefore, [P]2=[A(ATA)1AT][A(ATA)1AT]\displaystyle [P]^{2}=[A(A^{T}A)^{-1}A^{T}][A(A^{T}A)^{-1}A^{T}]

=A[(ATA)1(ATA)](ATA)1AT\displaystyle =A[(A^{T}A)^{-1}(A^{T}A)](A^{T}A)^{-1}A^{T}

=A(ATA)1AT\displaystyle =A(A^{T}A)^{-1}A^{T}

=[P]\displaystyle =[P]

Does that help?.
 
Top