\(\displaystyle \sum_{n = 1}^{\infty} \dfrac{(-1)^{n}4}{n}\)
\(\displaystyle a_{n + 1} = \dfrac{4}{n + 1}\)
\(\displaystyle a_{n} = \dfrac{4}{n}\)
\(\displaystyle n = 5\) and \(\displaystyle a_{n + 1} = \dfrac{4}{6}\) and \(\displaystyle a_{n} = \dfrac{4}{5}\)
How did they come up with the value of n?
Alternating Series Test
If \(\displaystyle 0 < a_{n + 1} \leq a_{n}\) and \(\displaystyle \lim n \rightarrow \infty a_{n} = 0\) then it converges, otherwise diverges.
Ok, this last bit makes sense.
So \(\displaystyle 0 < \dfrac{4}{6} \leq \dfrac{4}{5}\) and \(\displaystyle \lim n \rightarrow \infty \dfrac{4}{n} = 0\) so this alternating series converges.
\(\displaystyle a_{n + 1} = \dfrac{4}{n + 1}\)
\(\displaystyle a_{n} = \dfrac{4}{n}\)
\(\displaystyle n = 5\) and \(\displaystyle a_{n + 1} = \dfrac{4}{6}\) and \(\displaystyle a_{n} = \dfrac{4}{5}\)
How did they come up with the value of n?
Alternating Series Test
If \(\displaystyle 0 < a_{n + 1} \leq a_{n}\) and \(\displaystyle \lim n \rightarrow \infty a_{n} = 0\) then it converges, otherwise diverges.
Ok, this last bit makes sense.
So \(\displaystyle 0 < \dfrac{4}{6} \leq \dfrac{4}{5}\) and \(\displaystyle \lim n \rightarrow \infty \dfrac{4}{n} = 0\) so this alternating series converges.
Last edited: