Another Seperation of Variables Problem

Jason76

Senior Member
Joined
Oct 19, 2012
Messages
1,180
Looking at the same one from the other thread:

2xdx=1y2dy\displaystyle \dfrac{2\sqrt{x}}{dx} = \dfrac{\sqrt{1 - y^{2}}}{dy}

2dy(1y2)1/2=x1/2dx\displaystyle \dfrac{2dy }{(1 - y^{2})^{1/2}} = x^{-1/2}dx

2dy(1y2)1/2=x1/2dx\displaystyle 2\int \dfrac{dy}{(1 - y^{2})^{1/2}} = \int x^{-1/2}dx :confused: Did the 2 on the far left side come from substitution?

2arcsiny+Cy=2x1/2+Cx\displaystyle 2 \arcsin y + C_y = 2x^{1/2} + C_x

2arcsiny+CyCy=2x1/2+CxCy\displaystyle 2 \arcsin y + C_y - C_y - = 2x^{1/2} + C_x - C_y

2arcsiny=2x1/2+C\displaystyle 2 \arcsin y = 2x^{1/2} + C

arcsiny=x1/2+C\displaystyle \arcsin y = x^{1/2} + C

y=sin(x+C)\displaystyle y = \sin(\sqrt{x} + C)
 
Last edited:
Looking at the same one from the other thread:

2xdx=1y2dy\displaystyle \dfrac{2\sqrt{x}}{dx} = \dfrac{\sqrt{1 - y^{2}}}{dy}

2dy(1y2)1/2=x1/2dx\displaystyle \dfrac{2dy }{(1 - y^{2})^{1/2}} = x^{-1/2}dx

2dy(1y2)1/2=x1/2dx\displaystyle 2\int \dfrac{dy}{(1 - y^{2})^{1/2}} = \int x^{-1/2}dx :confused: Did the 2 on the far left side come from substitution?

What substitution?

You had a "2" on the far-left-side from the first line down....


2arcsiny+Cy=2x1/2+Cx\displaystyle 2 \arcsin y + C_y = 2x^{1/2} + C_x

2arcsiny+CyCy=2x1/2+CxCy\displaystyle 2 \arcsin y + C_y - C_y - = 2x^{1/2} + C_x - C_y

2arcsiny=2x1/2+C\displaystyle 2 \arcsin y = 2x^{1/2} + C

arcsiny=x1/2+C\displaystyle \arcsin y = x^{1/2} + C

y=sin(x+C)\displaystyle y = \sin(\sqrt{x} + C)

.
 

So all constants of integration don't come from substitution.

:confused: How does this problem relate to the integral: arcsinxdx=xarcsinx+(1x2)1/2+C\displaystyle \int \arcsin x dx = x \arcsin x + (1 - x^{2})^{1/2} + C ? I can see somehow how it relates.
 
Last edited:
So all constants of integration don't come from substitution. .... I am not sure what do you mean by that.

:confused: How does this problem relate to the integral: arcsinxdx=xarcsinx+(1x2)1/2+C\displaystyle \int \arcsin x dx = x \arcsin x + (1 - x^{2})^{1/2} + C ? I can see somehow how it relates.

I don't see any relation - but then relation is in the eye of the beholder.

arcsinxdx=xarcsinx+(1x2)1/2+C\displaystyle \int \arcsin x dx = x \arcsin x + (1 - x^{2})^{1/2} + C

use integration by parts:

u = sin-1(x)

dv = dx
 
Top