Looking at the same one from the other thread:
dx2x=dy1−y2
(1−y2)1/22dy=x−1/2dx
2∫(1−y2)1/2dy=∫x−1/2dx
Did the 2 on the far left side come from substitution?
2arcsiny+Cy=2x1/2+Cx
2arcsiny+Cy−Cy−=2x1/2+Cx−Cy
2arcsiny=2x1/2+C
arcsiny=x1/2+C
y=sin(x+C)
dx2x=dy1−y2
(1−y2)1/22dy=x−1/2dx
2∫(1−y2)1/2dy=∫x−1/2dx
2arcsiny+Cy=2x1/2+Cx
2arcsiny+Cy−Cy−=2x1/2+Cx−Cy
2arcsiny=2x1/2+C
arcsiny=x1/2+C
y=sin(x+C)
Last edited: