Another Su/pInf problem

daon

Senior Member
Joined
Jan 27, 2006
Messages
1,284
I think I got most of it, but am stuck at a particular point.

"If A \displaystyle \subseteq B then SupA \displaystyle \le SupB and InfB \displaystyle \leInfA."

I broke it down as follows:


If SupA \displaystyle \in A then SupA \displaystyle \in B since for all A \displaystyle \in A, a \displaystyle \in B. By the definition of SupB, SupA \displaystyle \le SupB.

If SupA \displaystyle \notin A then:
. . .If SupA \displaystyle \in B then
. . .. . .by defn of SupB, SupA \displaystyle \le SupB
. . .Else we have SupA \displaystyle \notin B, so
. . .. . .I want to say SupA=SupB, but I can't think of a justification other than my intuition



Similarly, for Inf:


If InfA \displaystyle \in A then InfA \displaystyle \in B since for all A \displaystyle \in A, a \displaystyle \in B. By the definition of InfB, InfB \displaystyle \le InfA.

If InfA \displaystyle \notin A then:
. . .If InfA \displaystyle \in B then
. . .. . .by defn of InfB, InfB \displaystyle \le InfA
. . .Else we have InfA \displaystyle \notin B, so
. . .. . .Like above I want to say InfA=InfB, but I can't think of a valid justification


Thank you,
Daon
 
daon said:
I think I got most of it, but am stuck at a particular point.

"If A \displaystyle \subseteq B then SupA \displaystyle \le SupB and InfB \displaystyle \leInfA."

I broke it down as follows:


If SupA \displaystyle \in A then SupA \displaystyle \in B since for all A \displaystyle \in A, a \displaystyle \in B. By the definition of SupB, SupA \displaystyle \le SupB.

If SupA \displaystyle \notin A then:
. . .If SupA \displaystyle \in B then
. . .. . .by defn of SupB, SupA \displaystyle \le SupB
. . .Else we have SupA \displaystyle \notin B, so
. . .. . .I want to say SupA=SupB, but I can't think of a justification other than my intuition

Let A = (0,1), B = A U {2}. Sup A = 1 \displaystyle \notin A and \displaystyle \notin B but SupA = 1 \displaystyle \not = Sup B = 2.

My proof: When A \displaystyle \subset B, any upper bound b for B is an upper bound for A because a \displaystyle \in A implies a \displaystyle \in B so a \displaystyle \le b. So b = SupB is an upper bound for A. Since SupA is the least upper bound for A, SupA \displaystyle \le SupB.



Similarly, for Inf:


If InfA \displaystyle \in A then InfA \displaystyle \in B since for all A \displaystyle \in A, a \displaystyle \in B. By the definition of InfB, InfB \displaystyle \le InfA.

If InfA \displaystyle \notin A then:
. . .If InfA \displaystyle \in B then
. . .. . .by defn of InfB, InfB \displaystyle \le InfA
. . .Else we have InfA \displaystyle \notin B, so
. . .. . .Like above I want to say InfA=InfB, but I can't think of a valid justification


Thank you,
Daon
 
It seems so obvious now! Thank you for clearing that up for me.
 
Top