Area of Parallelogram

Lime

New member
Joined
Sep 8, 2006
Messages
49
Find the area of the parallelogram determined by the vectors u = (-1, 1, 0) and v = (2, 3, -1).
 
the area of the parallelogram will be the magnitude of the cross product of vectors u and v.
 
Hello, Lime!

skeeter is absolutely correct . . .


Find the area of the parallelogram determined
by the vectors: u=1,1,0\displaystyle \,\vec{u} \:= \:\langle-1,1,0\rangle\, and v=2,3,1\displaystyle \,\vec{v} \:= \:\langle2,3,-1\rangle

First, find: u×v  =  ijk110231  =  ij5k  =  1,1,5\displaystyle \:\vec{u}\,\times\,\vec{v}\;=\;\begin{vmatrix}i & j & k \\ -1 & 1 & 0 \\ 2 & 3 & -1\end{vmatrix}\;=\;-i\,-\,j\,-\,5k \;=\;\langle-1,-1,-5\rangle

Then: Area =u×v  =  (1)2+(1)2+(5)2  =  27  =  33\displaystyle \:\text{Area }\:=\:\left|\vec{u}\,\times\,\vec{v}\right| \;=\;\sqrt{(-1)^2\,+\,(-1)^2\,+\,(-5)^2} \;=\;\sqrt{27} \;=\;3\sqrt{3}

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

If you are unfamiliar with that area formula,
. . you could have found the area anyway.
Code:
            *- - - - - - - - - - *
           /:                    /
        v / :                   /
         /  : v·sinθ           /
        /   :                 /
       /θ   :                /
      * - - - - - - - - - - *
                  u

The area of a parallelogram is: base × height.\displaystyle \,\text{base }\times\text{ height.}
The base is u\displaystyle |u| . . . The height is vsinθ\displaystyle |v|\sin\theta
. . Hence, the area is: A=uvsinθ\displaystyle \:A \:=\:|u||v|\sin\theta\: [1]

The angle θ\displaystyle \thetabetween two vectors u\displaystyle \vec{u} and v\displaystyle \vec{v} is given by: \(\displaystyle \L\:\cos\theta \;=\;\frac{|\vec{u}\cdot\vec{v}|}{|\vec{u}||\vec{v}|}\)

We have: uv=1,1,02,3,1=2+3+0=1\displaystyle \,\left|\vec{u}\cdot\vec{v}\right|\:=\:\left|\langle-1,1,0\rangle\cdot\langle2,3,-1\rangle\right| \:=\:\left|-2\,+\,3\,+\,0\right| \:=\:1
. . and: u=(1)2+12+02=2\displaystyle \:|\vec{u}| \:=\:\sqrt{(-1)^2\,+\,1^2\,+\,0^2} \:=\:\sqrt{2}\, and v=22+32+(1)2=14\displaystyle \,|\vec{v}| \:=\:\sqrt{2^2\,+\,3^2\,+\,(-1)^2} \:=\:\sqrt{14}

Hence: cosθ=128        sinθ=3328\displaystyle \:\cos\theta \:=\:\frac{1}{\sqrt{28}} \;\;\Rightarrow\;\;\sin\theta \:=\:\frac{3\sqrt{3}}{\sqrt{28}}

Substitute into [1]: \(\displaystyle \L\:A \:=\:|\vec{u}||\vec{v}|\sin\theta \:=\:(\sqrt{2})(\sqrt{14})\left(\frac{3\sqrt{3}}{\sqrt{28}\right) \:=\:\fbox{3\sqrt{3}}\)
. . . . . see?

 
Top