Astrophysics and Cosmology

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,488
In the later stages of stellar evolution, a star (if massive enough) will begin fusing carbon nuclei to form, for example, magnesium:

  612C+  612C1224Mg+γ\displaystyle {}^{12}_{\ \ 6}\text{C} + {}^{12}_{\ \ 6}\text{C} \rightarrow {}^{24}_{12}\text{Mg} + \gamma

(a)\displaystyle \bold{(a)} How much energy is released in this reaction? (b)\displaystyle \bold{(b)} How much kinetic energy must each carbon nucleus have (assume equal) in a head-on collision if they are just to touch so that the strong force can come into play? (c)\displaystyle \bold{(c)} What temperature does this kinetic energy correspond to?
 
(a)\displaystyle \bold{(a)}

The released energy is just the Q\displaystyle Q-value.

Q=(\displaystyle Q = ( masses before reaction \displaystyle - masses after reaction )c2\displaystyle )c^2

=(12 u+12 u23.985042 u0 u)c2=(0.014958 u)c2\displaystyle = (12 \ \text{u} + 12 \ \text{u} - 23.985042 \ \text{u} - 0 \ \text{u})c^2 = (0.014958 \ \text{u})c^2

We need to get this energy in eV\displaystyle \text{eV}. Therefore, let us calculate the rest energy for 1\displaystyle 1 atomic mass unit (u\displaystyle \text{u}).

u=1.6605×1027 kg\displaystyle \text{u} = 1.6605 \times 10^{-27} \ \text{kg}

Then,

E=mc2=1.6605×1027×(299792458)2=1.492382974×1010 J\displaystyle E = mc^2 = 1.6605 \times 10^{-27} \times (299792458)^2 = 1.492382974 \times 10^{-10} \ \text{J}

Let us convert it to eV\displaystyle \text{eV}.

E=1.492382974×10101.602×1019=9.3157×108 eV=931.57 MeV\displaystyle E = \frac{1.492382974 \times 10^{-10}}{1.602 \times 10^{-19}} = 9.3157 \times 10^{8} \ \text{eV} = 931.57 \ \text{MeV}

This gives:

uc2=931.57 MeV\displaystyle \text{u}c^2 = 931.57 \ \text{MeV}

Then,

Q=(0.014958 u)c2 931.57 MeVuc2=13.93 MeV\displaystyle Q = (0.014958 \ \text{u})c^2 \ \frac{931.57 \ \text{MeV}}{\text{u}c^2} = 13.93 \ \text{MeV} of energy is released
 
How much kinetic energy must each carbon nucleus have (assume equal) in a head-on collision if they are just to touch so that the strong force can come into play?
When two nuclei collide their kinetic energies transform to potential energy. That is:
2K=U\displaystyle 2K = U

From accumulated knowledge we know that the potential energy U=qV\displaystyle U = qV

where V\displaystyle V is the potential.

We know that qV=qq4πϵ0r\displaystyle qV = q\frac{q}{4\pi \epsilon_0 r}

But since we have two radii, we have to double the distance.

U=qV=qq4πϵ02r\displaystyle U = qV = q\frac{q}{4\pi \epsilon_0 2r}

So, we have two nuclei colliding and each one holding 6 protons (carbon). The formula becomes:

U=6×e×6×e4πϵ02r\displaystyle U = \frac{6 \times e \times 6 \times e}{4\pi \epsilon_0 2r}

e24πϵ0=1.44 MeVfm    \displaystyle \frac{e^2}{4\pi \epsilon_0} = 1.44 \ \text{MeV} \cdot \text{fm} \ \ \ \ (I will derive this result in future Epsiodes.)

Then, we have:

U=36×1.442r\displaystyle U = \frac{36 \times 1.44}{2r}

Or

U=18×1.44r\displaystyle U = \frac{18 \times 1.44}{r}

The radius of carbon nucleus can be approximated by:

r=(1.2 fm)A1/3\displaystyle r = (1.2 \ \text{fm})A^{1/3}

where A\displaystyle A is the mass number.

Then,

r=(1.2 fm)121/3\displaystyle r = (1.2 \ \text{fm})12^{1/3}

The energy becomes:

U=18×1.44 MeVfm(1.2 fm)121/3\displaystyle U = \frac{18 \times 1.44 \ \text{MeV} \cdot \text{fm}}{(1.2 \ \text{fm})12^{1/3}}

Or

2K=18×1.44 MeV(1.2)121/3\displaystyle 2K = \frac{18 \times 1.44 \ \text{MeV}}{(1.2)12^{1/3}}

Or

K=9×1.44 MeV(1.2)121/3=4.717 MeV\displaystyle K = \frac{9 \times 1.44 \ \text{MeV}}{(1.2)12^{1/3}} = \textcolor{blue}{4.717 \ \text{MeV}}
 
Last edited:
(c)\displaystyle \bold{(c)} What temperature does this kinetic energy correspond to?
We have a beautiful formula that relates kinetic energy and temperature. That is:

K=32kT\displaystyle K = \frac{3}{2}kT

where k\displaystyle k is the Boltzmann constant.

Plug in numbers.

4.717 MeV=32(1.38×1023 JK)T\displaystyle 4.717 \ \text{MeV} = \frac{3}{2}\left(1.38 \times 10^{-23}\ \frac{\text{J}}{\text{K}}\right)T

We have problem in the units above as they don't match. So we need to get rid of MeV\displaystyle \text{MeV}.

4.717 MeV×1.602×1013 JMeV=32(1.38×1023 JK)T\displaystyle 4.717 \ \text{MeV} \times \frac{1.602 \times 10^{-13} \ \text{J}}{\text{MeV}}= \frac{3}{2}\left(1.38 \times 10^{-23}\ \frac{\text{J}}{\text{K}}\right)T

This gives:

T=3.65×1010 K\displaystyle T = \color{blue} 3.65 \times 10^{10} \ \text{K}
 
Top