Average velocity in turbulent pipe flow

willm78

New member
Joined
Feb 2, 2016
Messages
2
When I first looked at this problem, I thought I'd be able to breeze through it. I sat down at my desk at 5pm and didn't get up until after 3am. I have the solution but am missing a step. I was able to find this exact question within a couple publications online but none show the complete solution.

Q: Assume the velocity profile in turbulent flow follows a power law, as in Eq. 3-7, with exponent 'n'. Derive anexpression for the ratio of the average velocity to the maximum velocity (v/vmax) as afunction of n. Plot v/vmax for n ranging from 0.1 to 0.5.

attachment.php


I hope someone might be able to help. This problem is driving me crazy! I have tried everything I know of and nothing has worked yet. Even when I integrate the part I'm stuck at on a calculator, the solution comes back wrong.
 

Attachments

  • IMG_0311.jpg
    IMG_0311.jpg
    490.3 KB · Views: 3
  • IMG_0311.jpg
    IMG_0311.jpg
    490.3 KB · Views: 10
Solved it with substitution:

vˉ(r)vmax=2ri2\displaystyle \dfrac{\bar{v}(r)}{v_{max}}\, =\, \dfrac{2}{r_i^2}\, 0ri(1rri)nrdr\displaystyle \displaystyle \int_0^{r_i}\, \left(1\, -\, \dfrac{r}{r_i}\right)^n\, r\, dr

u=1rrir=(1u)ri\displaystyle u\, =\, 1\, -\, \dfrac{r}{r_i}\, \Rightarrow\, r\, =\, (1\, -\, u)\, r_i

. . . . . . . . . . . .dr=ridu\displaystyle dr\, =\, -r_i\, du

\(\displaystyle \begin{align} \dfrac{\bar{v}(r)}{v_{max}}\, &=\, \dfrac{2}{r_i^2}\, \displaystyle{\int} \, u^n\, (1\, -\, u)\, r_i\, (-r_i)\, du

\\ \\&=\, \dfrac{2}{r_i^2} \, \left(\, \dfrac{r_i^2\, u^{n+2}}{n\, +\, 2}\, -\, \dfrac{r_i^2\, u^{n+1}}{n\, +\, 1}\, \right)

\\ \\&=\, \dfrac{2}{1} \, \left(\, \dfrac{u^{n+2}}{n\, +\, 2}\, -\, \dfrac{u^{n+1}}{n\, +\, 1}\, \right)

\\ \\&=\, \dfrac{2}{1} \, \left.\left(\, \dfrac{\left(1\, -\, \dfrac{r}{r_i}\right)^{n+2}}{n\, +\, 2}\, -\, \dfrac{\left(1\, -\, \dfrac{r}{r_i}\right)^{n+1}}{n\, +\, 1}\, \right)\, \right|_0^{r_i}

\\ \\&=\, 2\, \left(0\, -\, 0\, -\, \dfrac{1}{n\, +\,2}\, +\, \dfrac{1}{n\, +\, 1}\right)

\\ \\&=\, -\dfrac{2}{n\, +\, 2}\, +\, \dfrac{2}{n\, +\, 1}

\\ \\&=\, -\dfrac{2\, (n\, +\, 1)}{(n\, +\, 2)\, (n\, +\, 1)}\, +\, \dfrac{2\, (n\, +\, 2)}{(n\, +\, 1)\, (n\, +\, 2)}

\\ \\&=\, \dfrac{-(2n\, +\, 2)\, +\, (2n\, +\, 4)}{(n\, +\, 1)\, (n\, +\, 2)}

\\ \\&=\, \dfrac{-2n\, -\, 2\, +\, 2n\, +\, 4}{(n\, +\, 1)\, (n\, +\, 2)} \end{align}\)

vˉ(r)vmax=2n2+2n+4(n+1)(n+2)\displaystyle \boxed{ \dfrac{\bar{v}(r)}{v_{max}}\, =\,\dfrac{-2n\, -\, 2\, +\, 2n\, +\, 4}{(n\, +\, 1)\, (n\, +\, 2)} }
 

Attachments

  • power_law.jpg
    power_law.jpg
    269.2 KB · Views: 5
Last edited by a moderator:
Top