sambellamy
Junior Member
- Joined
- Oct 21, 2014
- Messages
- 53
I am asked to show that the first order Bessel function
J1(x) = Ʃ∞n=0 (-1)n(x2n)(x) / (n)!(n+1)!(22n)(2)
is a solution to the differential equation
x2 J1''(x) + xJ1'(x) + (x2 -1) J1(x) = 0
I am having some trouble. I have found:
J1'(x) = Ʃ∞n=0 (-1)n(2n+1)(x2n) / (n)!(n+1)!(22n)(2)
and x J1'(x) = Ʃ∞n=0 (-1)n(2n+1)(x2n+1) / (n)!(n+1)!(22n)(2)
J1''(x) = Ʃ∞n=1 (-1)n(2n+1)(2n)(x2n-1) / (n)!(n+1)!(22n)(2)
J1''(x) = Ʃ∞n=0 (-1)n+1(2n+3)(2n+2)(x2n) / (n=1)!(n+2)!(22n)(22)
and x2 J1''(x) = Ʃ∞n=0 (-1)n+1(2n+3)(2n+2)(x2n)(x2) / (n=1)!(n+2)!(22n)(22)
and (x2 -1) J1(x) = Ʃ∞n=0 [(-1)n(x2n)(x3) / (n)!(n+1)!(22n)(2) - (-1)n(x2n)(x) / (n)!(n+1)!(22n)(2)]
with all that work, I get that the whole thing is
Ʃ∞n=0 [ (x2n)(x) / (n+1)!(22n)(2) ] times [(-1)n+1(2n+3)(2n+2)(x) / (n+2)!(2) + (-1)n(2n+1)/ (n)! + (-1)n(x2) / (n)! - (-1)n/ (n)! ]
what have I done? Please help!
J1(x) = Ʃ∞n=0 (-1)n(x2n)(x) / (n)!(n+1)!(22n)(2)
is a solution to the differential equation
x2 J1''(x) + xJ1'(x) + (x2 -1) J1(x) = 0
I am having some trouble. I have found:
J1'(x) = Ʃ∞n=0 (-1)n(2n+1)(x2n) / (n)!(n+1)!(22n)(2)
and x J1'(x) = Ʃ∞n=0 (-1)n(2n+1)(x2n+1) / (n)!(n+1)!(22n)(2)
J1''(x) = Ʃ∞n=1 (-1)n(2n+1)(2n)(x2n-1) / (n)!(n+1)!(22n)(2)
J1''(x) = Ʃ∞n=0 (-1)n+1(2n+3)(2n+2)(x2n) / (n=1)!(n+2)!(22n)(22)
and x2 J1''(x) = Ʃ∞n=0 (-1)n+1(2n+3)(2n+2)(x2n)(x2) / (n=1)!(n+2)!(22n)(22)
and (x2 -1) J1(x) = Ʃ∞n=0 [(-1)n(x2n)(x3) / (n)!(n+1)!(22n)(2) - (-1)n(x2n)(x) / (n)!(n+1)!(22n)(2)]
with all that work, I get that the whole thing is
Ʃ∞n=0 [ (x2n)(x) / (n+1)!(22n)(2) ] times [(-1)n+1(2n+3)(2n+2)(x) / (n+2)!(2) + (-1)n(2n+1)/ (n)! + (-1)n(x2) / (n)! - (-1)n/ (n)! ]
what have I done? Please help!