Binomial in ratio

IloveManUtd

New member
Joined
Jul 27, 2010
Messages
48
In the expansion of (3+4x)[sup:33uo6uz1]n[/sup:33uo6uz1], the coefficients of x[sup:33uo6uz1]4[/sup:33uo6uz1] and x[sup:33uo6uz1]5[/sup:33uo6uz1] are in the ratio 5:16. Find the value of n.

Do I do like this: [[n(n-1)(n-2)(n-3)(n-4)]/(5!)] / [[n(n-1)(n-2)(n-3)] /(4!)] = 16/5 ? If yes then what next? I'm stuck. Thx.
 
Let me see. It is mighty early.

But, if we write:

(n4)3n4(4)4(n5)3n5(4)5=154(n4)\displaystyle \frac{\binom{n}{4}\cdot 3^{n-4}(4)^{4}}{\binom{n}{5}\cdot 3^{n-5}(4)^{5}}=\frac{15}{4(n-4)}

This reduces to:

154(n4)=516\displaystyle \frac{15}{4(n-4)}=\frac{5}{16}

Solve for n.
 
Hello, IloveManUtd!

In the expansion of (3+4x)n, the coefficients of x4 and x5 are in the ratio 5:16.\displaystyle \text{In the expansion of }(3+4x)^n,\,\text{ the coefficients of }x^4\text{ and }x^5\text{ are in the ratio }5:16.

Find the value of n.\displaystyle \text{Find the value of }n.

Do I do like this?   n(n1)(n2)(n3)(n4)5!n(n1)(n2)(n3)4!  =  165\displaystyle \text{Do I do like this? }\; \frac{\frac{n(n-1)(n-2)(n-3)(n-4)}{5!}} {\frac{n(n-1)(n-2)(n-3)}{4!}} \;=\; \frac{16}{5} . Um, not quite

If yes, then what next?\displaystyle \text{If yes, then what next?} . How about reducing that fraction?

You forgot about the coefficients in the binomial, 3 and 4.
They affect the answer, too.

\(\displaystyle \text{We have: }\;(4x+3)^n \;=\;{n\choose n}(4x)^n \;+\; {n\choose n-1}(4x)^{n-1}(3) \;+\; {n\choose n-2}(4x)^{n-2}(3^2) \;+\; {n\choose n-3}(4x)^{n-3}(3^3) \;+\; \hdots\)

The x4-term is:   (n4)(4x)4(3)n4\displaystyle \text{The }x^4\text{-term is: }\;{n\choose4}(4x)^4(3)^{n-4}

The x5-term is:   (n5)(4x)5(3)n5\displaystyle \text{The }x^5\text{-term is: }\;{n\choose5}(4x)^5(3)^{n-5}


The ratio of their coefficients is:   (n4)443n4(n5)453n5  =  516(n4)3(n5)4  =  51648(n4)  =  20(n5)\displaystyle \text{The ratio of their coefficients is: }\;\frac{{n\choose4}\cdot4^4\cdot3^{n-4}}{{n\choose5}\cdot4^5\cdot3^{n-5}} \;=\;\frac{5}{16} \quad\Rightarrow\quad \frac{{n\choose4}\cdot3}{{n\choose5}\cdot 4} \;=\;\frac{5}{16} \quad\Rightarrow\quad 48{n\choose4} \;=\;20{n\choose5}

We have:   48n(n1)(n2)(n3)4321  =  20n(n1)(n2)(n3)(n4)54321\displaystyle \text{We have: }\;48\cdot\frac{n(n-1)(n-2)(n-3)}{4\cdot3\cdot2\cdot1} \;=\;20\cdot\frac{n(n-1)(n-2)(n-3)(n-4)}{5\cdot4\cdot3\cdot2\cdot1}


Reduce: In the numerators, cancel n(n1)(n2)(n3)In the denominators, cancel 4321\displaystyle \text{Reduce: }\begin{array}{c} \text{In the numerators, cancel }n(n-1)(n-2)(n-3) \\ \text{In the denominators, cancel }4\cdot3\cdot2\cdot1 \end{array}

And we have:   48  =  20(n4)512=n4n=16\displaystyle \text{And we have: }\;48 \;=\;\frac{20(n-4)}{5} \quad\Rightarrow\quad 12\:=\:n-4 \quad\Rightarrow\quad \boxed{n \:=\:16}

 
Top