Hello people,
I have a problem to calculate this exercise using the definition of the Fourier transform:
\(\displaystyle \mbox{(a) }\, f(x)\, =\, \begin{cases}0,&\mbox{ for se}\, |\, x\, |\, >\, \pi\\-1,&\mbox{ for se}\, -\pi\, <\, x\, <\, 0\\1,&\mbox{ for se}\, 0\, <\, x\, <\, \pi \end{cases}\)
\(\displaystyle \mbox{(b) }\, f(x)\, =\, \begin{cases}e^{-|x|},&\mbox{ for se}\, |\, x\, |\, >\, 10\\-x,&\mbox{ for se}\, -10\, <\, x\, <\, 0\\x,&\mbox{ for se}\, 0\, <\, x\, <\, 10 \end{cases}\)
Thanks.
Att.
Joseph F.
I have a problem to calculate this exercise using the definition of the Fourier transform:
\(\displaystyle \mbox{(a) }\, f(x)\, =\, \begin{cases}0,&\mbox{ for se}\, |\, x\, |\, >\, \pi\\-1,&\mbox{ for se}\, -\pi\, <\, x\, <\, 0\\1,&\mbox{ for se}\, 0\, <\, x\, <\, \pi \end{cases}\)
\(\displaystyle \mbox{(b) }\, f(x)\, =\, \begin{cases}e^{-|x|},&\mbox{ for se}\, |\, x\, |\, >\, 10\\-x,&\mbox{ for se}\, -10\, <\, x\, <\, 0\\x,&\mbox{ for se}\, 0\, <\, x\, <\, 10 \end{cases}\)
Thanks.
Att.
Joseph F.
Last edited by a moderator: