Calculating limits: limit_{n -> infinity} (n * sin(n!))/(n^2 + 1)

Qwertyuiop[]

Junior Member
Joined
Jun 1, 2022
Messages
123
I have another question: limn(nsin(n!)n2+1)\lim _{n\to \infty }\left(\frac{n\cdot sin\left(n!\right)}{n^2+1}\right). I used the squeeze theorem to find the limit because 1sin(x)1-1\le sin\left(x\right)\le 1.
1sin(n!)1-1\le sin\left(n!\right)\le 1
limn(nn2+1)limnnsin(n!)n2+1limn(nn2+1)\lim _{n\to \infty }\left(\frac{-n}{n^2+1}\right)\le \lim \:_{n\to \:\infty \:}\frac{n\cdot sin\left(n!\right)}{n^2+1}\le \lim \:_{n\to \:\infty \:}\left(\frac{n}{n^2+1}\right) and the limit of (nn2+1)\left(\frac{-n}{n^2+1}\right) and (nn2+1)\left(\frac{n}{n^2+1}\right) as n goes to infnity is 0. So limnnsin(n!)n2+1=0\lim \:_{n\to \:\infty \:}\frac{n\cdot sin\left(n!\right)}{n^2+1} =0. But when i check the answer on symbolab , it says "Does not exist". What's wrong with what I did?
 
I have another question: limn(nsin(n!)n2+1)\lim _{n\to \infty }\left(\frac{n\cdot sin\left(n!\right)}{n^2+1}\right). I used the squeeze theorem to find the limit because 1sin(x)1-1\le sin\left(x\right)\le 1.
1sin(n!)1-1\le sin\left(n!\right)\le 1
limn(nn2+1)limnnsin(n!)n2+1limn(nn2+1)\lim _{n\to \infty }\left(\frac{-n}{n^2+1}\right)\le \lim \:_{n\to \:\infty \:}\frac{n\cdot sin\left(n!\right)}{n^2+1}\le \lim \:_{n\to \:\infty \:}\left(\frac{n}{n^2+1}\right) and the limit of (nn2+1)\left(\frac{-n}{n^2+1}\right) and (nn2+1)\left(\frac{n}{n^2+1}\right) as n goes to infnity is 0. So limnnsin(n!)n2+1=0\lim \:_{n\to \:\infty \:}\frac{n\cdot sin\left(n!\right)}{n^2+1} =0. But when i check the answer on symbolab , it says "Does not exist". What's wrong with what I did?
The answer should be 0. Symbolab isn't the most reliable engine. I prefer WolframAlpha.
 
I have another question: limn(nsin(n!)n2+1)\lim _{n\to \infty }\left(\frac{n\cdot sin\left(n!\right)}{n^2+1}\right). I used the squeeze theorem to find the limit because 1sin(x)1-1\le sin\left(x\right)\le 1.
1sin(n!)1-1\le sin\left(n!\right)\le 1
limn(nn2+1)limnnsin(n!)n2+1limn(nn2+1)\lim _{n\to \infty }\left(\frac{-n}{n^2+1}\right)\le \lim \:_{n\to \:\infty \:}\frac{n\cdot sin\left(n!\right)}{n^2+1}\le \lim \:_{n\to \:\infty \:}\left(\frac{n}{n^2+1}\right) and the limit of (nn2+1)\left(\frac{-n}{n^2+1}\right) and (nn2+1)\left(\frac{n}{n^2+1}\right) as n goes to infnity is 0. So limnnsin(n!)n2+1=0\lim \:_{n\to \:\infty \:}\frac{n\cdot sin\left(n!\right)}{n^2+1} =0. But when i check the answer on symbolab , it says "Does not exist". What's wrong with what I did?
You didn't do anything wrong. Symbolab is probably reacting to the sin(n!), which does not have a limit that exists for nn \to \infty. But, as you say, 1sin(n!)1-1 \leq sin(n!) \leq 1 and the factor outside of the sine function is n/(n2+1)n/(n^2 + 1), which has a limit of 0 as nn \to \infty.

-Dan
 
Top