Calculus: chain rule with product/quotient rule (step by step please?)

Silencher

New member
Joined
Sep 27, 2013
Messages
9
Hey all. Below are the various problems I did and how I did them. Can someone go through what I did and show me where I messed up in which step and how I messed up? I really don't understand what I'm doing wrong.

(1.) WRONG


derive: y = (3x-5)^4 * (2-x^4)^4


Step 1: Find g/h


g(x): (3x-5)^4
h(x): (2-x^4)^4
g'(x): (12)(3x-5)^3
h'(x): (16x^3)(2-x^4)^3


((3x-5)^4) * (16x^3)((2-x^4)^3) + ((2-x^4)^4)(12)((3x-5)^3)<--my answer


4(3x-5)^3 (2-x^4)^3(6+20x^3 -15x^4)<--correct answer


---
(2.) WRONG


Derive: y = x(x^3+9)^4


(4x(x^3+9)^3)(3x^2)<--my answer


(x^3+9)^3(13x^3+9) <---right answer


---
(3.) WRONG


Derive: y = (3x-3)^5 * (5-x^4)^3


(3)(5)((3x-3)^4)((5-x^4)^3) +((3x-3)^5)(4x^3)(3(5-x^4)^2)


(15)((3x-3)^4)((5-x^4)^3)+((3x-3)^5)(12x^3)(5-x^4)^2)<--myanswer(simplified)


(243)(x-1)^4(5-x^4)^2(25+12x^3-17x^4)<---correct answer
---
(7.) WRONG


y = ((4x+1)^4) / ((3x+1)^3)


Step 1: Set g/h's


g(x): (4x+1)^4
h(x): (3x+1)^3
g'(x): 16((4x+1)^3) <--simplifiedfrom: (4)(4)((4x+1)^3)
h'(x): 9(3x+1)^2)<--simplified from:(3)(3)((3x+1)^2)
(h(x))^2: ((3x+1)^3)^2)


Step 2: Input into quotient formula:


(16)((4x+1)^3)((3x+1)^3) -(9)((3x+1)^2) ((4x+1)^4)
____________________________________
(((3x+1)^3)^2)


Step 3: Simplify/my answer:


((16)((12x^2+7x+1)^3)) -((9)((3x+1)^2)((4x+2)^4)
____________________________________
(((3x+1)^3)^2)


=below is the correct answer=


(4x+1)^3 * (12x+7)
________________
(3x+1)^4
 
I will show work/comments on just the first one.

(1.) WRONG


derive: y = (3x-5)^4 * (2-x^4)^4


Step 1: Find g/h     \displaystyle \ \ \ \ No, you mean g*h.


g(x): (3x - 5)^4


h(x): (2 - x^4)^4


g'(x): (12)(3x - 5)^3


h'(x): (-16x^3)(2 - x^4)^3     \displaystyle \ \ \ \ You were missing a negative sign for the coefficient on x^3. (I typed one in here, but not in the next line.)


((3x - 5)^4) * (16x^3)((2 - x^4)^3) + ((2 - x^4)^4)(12)((3x - 5)^3) <--my answer    \displaystyle \ \ \ The answer took it further and factored out the common binomial factors.


4(3x - 5)^3 (2 - x^4)^3(6 + 20x^3 - 15x^4) <--correct answer

---


(3x5)4(16x3)(2x4)3 + (2x4)4(12)(3x5)3 =\displaystyle (3x - 5)^4 (-16x^3)(2 - x^4)^3 \ + \ (2 - x^4)^4(12)(3x - 5)^3 \ =

4(3x5)3(2x4)3[4x3(3x5) + 3(2x4)] =\displaystyle 4(3x - 5)^3 (2 - x^4)^3[-4x^3(3x - 5) \ + \ 3(2 - x^4)] \ =


4(3x5)3(2x4)3(12x4+20x3+63x4) =\displaystyle 4(3x - 5)^3(2 - x^4)^3(-12x^4 + 20x^3 + 6 - 3x^4) \ =

4(3x5)3(2x4)3(6+20x315x4)\displaystyle 4(3x - 5)^3(2 - x^4)^3(6 + 20x^3 - 15x^4)
 
Hey all. Below are the various problems I did and how I did them. Can someone go through what I did and show me where I messed up in which step and how I messed up? I really don't understand what I'm doing wrong.

(2.) WRONG


Derive: y = x(x^3+9)^4


(4x(x^3+9)^3)(3x^2)<--my answer


(x^3+9)^3(13x^3+9) <---right answer
The way to avoid mistakes is to use substitutions and the chain rule

Find y given y=x(x3+9)4.\displaystyle Find\ y'\ given\ y = x(x^3+9)^4.

u=x, v=x3+9, and w=v4    y=uw    dydx=dudxw+udwdx.\displaystyle u = x,\ v = x^3 + 9,\ and\ w = v^4 \implies y = uw \implies \dfrac{dy}{dx} = \dfrac{du}{dx} * w + u * \dfrac{dw}{dx}. Easy, basic product rule.

u=x    dudx=1.\displaystyle u = x \implies \dfrac{du}{dx} = 1.

v=x3+9    dvdx=3x2.\displaystyle v = x^3 + 9 \implies \dfrac{dv}{dx} = 3x^2. Easy, power rule.

w=v4    dwdv=4v3    dwdx=dwdvdvdx.\displaystyle w = v^4 \implies \dfrac{dw}{dv} = 4v^3 \implies \dfrac{dw}{dx} = \dfrac{dw}{dv} * \dfrac{dv}{dx}. Easy, chain rule.

So dydx=1v4+u4v33x2=v3(v+12ux2)=(x3+9)(x3+9+12xx2)=(x3+9)(13x3+9).\displaystyle \dfrac{dy}{dx} = 1 * v^4 + u * 4v^3 * 3x^2 = v^3(v + 12ux^2) = (x^3 + 9)(x^3 + 9 + 12x * x^2) = (x^3 + 9)(13x^3 + 9).

Now these substitutions abd back substitutions take more time, but they are easy and make it harder to make mistakes.
 
Hello, Silencher!


We have:   y=(4x+1)4f(3x+1)3g\displaystyle \text{We have: }\;y \:=\: \dfrac{\overbrace{(4x+1)^4}^{f}}{\underbrace{(3x+1)^3}_g}

Then:     y  =  (3x+1)3g4(4x+1)34f(4x+1)4f3(3x+1)23g[(3x+1)3]2g2\displaystyle \text{Then: }\;\;y' \;=\;\dfrac{\overbrace{(3x+1)^3}^g\cdot\overbrace{4(4x+1)^3\cdot 4}^{f'} - \overbrace{(4x+1)^4}^f\cdot\overbrace{3(3x+1)^2 \cdot 3}^{g'}}{\underbrace{\left[(3x+1)^3\right]^2}_{g^2}}

Factor: y  =  (3x+1)2(4x+1)3[16(3x+1)9(4x+1)](3x+1)6\displaystyle \text{Factor: }\:y' \;=\;\dfrac{(3x+1)^2(4x+1)^3\cdot\big[16(3x+1) - 9(4x+1)\big]}{(3x+1)^6}

. . . . . . y  =  (4x+1)3[48x+1636x9](3x+1)4\displaystyle y' \;=\;\dfrac{(4x+1)^3\cdot\big[48x + 16 - 36x - 9\big]}{(3x+1)^4}

. . . . . . y  =  (4x+1)3(12x+7)(3x+1)4\displaystyle y' \;=\;\dfrac{(4x+1)^3(12x+7)}{(3x+1)^4}
 
Top