Calculus v=ds/dt making dt the subject

Starblazer

New member
Joined
Mar 28, 2013
Messages
18
velocity is

v=233s3/4\displaystyle v = \frac{{2\sqrt 3 }}{3}{s^{3/4}}

I need to re arrange (equation below) to find t (time)



v=dsdt233s3/4=dsdt\displaystyle v = \frac{{ds}}{{dt}} \Rightarrow \frac{{2\sqrt 3 }}{3}{s^{3/4}} = \frac{{ds}}{{dt}}

In Solution dt is given as

dt=32s3/4ds\displaystyle dt = \frac{{\sqrt 3 }}{2}{s^{ - 3/4}}ds

I do not understand how to get to dt. I know that dsdt\displaystyle \frac{{ds}}{{dt}} can be treated "like a fraction."

Can some please spell out the rearranging process.

Kind Regards
 
Do you know how to solve

xy=z\displaystyle \dfrac{x}{y} = z for y\displaystyle y? If so, is it the exponents that are giving you problems?
 
THank you for your help

v=dsdt233s3/4=dsdt\displaystyle v = \frac{{ds}}{{dt}} \Rightarrow \frac{{2\sqrt 3 }}{3}{s^{3/4}} = \frac{{ds}}{{dt}}

233s3/4dt=ds\displaystyle \frac{{2\sqrt 3 }}{3}{s^{3/4}}dt = ds

1233s3/4ds=dt\displaystyle \frac{1}{{\frac{{2\sqrt 3 }}{3}{s^{3/4}}}}ds = dt

323s3/4ds=dt\displaystyle \frac{3}{{2\sqrt 3 }}{s^{ - 3/4}}ds = dt

323×33s3/4ds=dt\displaystyle \frac{3}{{2\sqrt 3 }} \times \frac{{\sqrt 3 }}{{\sqrt 3 }}{s^{ - 3/4}}ds = dt

336s3/4ds=dt\displaystyle \frac{{3\sqrt 3 }}{6}{s^{ - 3/4}}ds = dt

32s3/4ds=dt\displaystyle \frac{{\sqrt 3 }}{2}{s^{ - 3/4}}ds = dt as required
 
Of course, the original problem was not to "find dt" but to find t. I presume you know that dt=t\displaystyle \int dt= t+ constant, so now you need to integrate both sides of the equation.
 
Top