Card Probability

Hello, dhs316!

A poker hand is defined as drawing five cards at random without replacement from a deck of 52 playing cards

There are:   52C5=52!5147!=2,598,960 possible poker hands.\displaystyle \text{There are: }\;_{52}C_5 \:=\:\frac{52!}{51\,47!} \:=\:2,598,960\text{ possible poker hands.}



Find the probability of the following power hands:

a) Four of a kind (four cards of equal face value and one of a different value)
Ans: 0.000024 . . . . too many zeros

There are 13 choices for the value of the 4-of-a-kind.
There is 1 way to get the 4 cards of that value.
The fifth card is one of the remaining 48 cards.

Hence, there are: .1348=624\displaystyle 13\cdot 48 \:=\:624 ways to get a 4-of-a-kind.

P(4-of-a-kind)  =  6242,598,960    0.00024\displaystyle P(\text{4-of-a-kind}) \;=\;\frac{624}{2,598,960} \;\approx\;0.00024



b) Full house (one pair and one triple cards with equal face value)
Ans: 0.00144

There are 13 choices for the value of the Triple.\displaystyle \text{There are 13 choices for the value of the Triple.}
. . There are: 4C3=4 ways to get the 3 cards of that Triple.\displaystyle \text{There are: }\:_4C_3 \:=\:4\text{ ways to get the 3 cards of that Triple.}

There are 12 choices for the value of the Pair.\displaystyle \text{There are 12 choices for the value of the Pair.}
. . There are: 4C2=6 ways to get the 2 cards of that Pair.\displaystyle \text{There are: }\:_4C_2 \,=\,6\text{ ways to get the 2 cards of that Pair.}

Hence, there are: .134126=3744\displaystyle 13\cdot4\cdot12\cdot6 \:=\:3744 ways to get a Full House.

P(Full House)  =  37442,598,960    0.00144\displaystyle P(\text{Full House}) \;=\;\frac{3744}{2,598,960} \;\approx\;0.00144



c) Three of a kind (three equal face values plus two cards of different values)
Ans: 0.02113

There are 13 choices for the value of the Triple.
. . There are: 4C3=4\displaystyle \text{There are: }\:_4C_3 \,=\,4 ways to get the 3 cards of that Triple.

Suppose we have three Kings.

Then the fourth card must be one of the other 48 cards (not Kings).
. . Suppose it is the 7\displaystyle 7\spadesuit.

Then the fifth card must be one of the other 44 cards (not Kings and not 7s).
. . Suppose it is the 5\displaystyle 5\heartsuit

It seems that there are 4844\displaystyle 48\cdot44 ways to get the two unmatched cards.
But the order of those two cards in not important.
. . (7, then 5)  =  (5, then 7)\displaystyle (7\spadesuit\text{, then }5\heartsuit) \;=\;(5\heartsuit\text{, then }7\spadesuit)
So we must divide by 2.

Hence, there are: 13448442=54,912 ways to get 3-of-a-kind.\displaystyle \text{Hence, there are: }\:13\cdot4\cdot\frac{48\cdot44}{2} \:=\:54,912\text{ ways to get 3-of-a-kind.}

P(3-of-a-kind)  =  54,9122,598,960    0.02113\displaystyle P(\text{3-of-a-kind}) \;=\;\frac{54,912}{2,598,960} \;\approx\;0.02113



d) Two pairs (two pairs of equal face value plus one card of different value)
Ans: 0.04754

There are: 13C2=78 choices for the values of the Two Pairs.\displaystyle \text{There are: }\:_{13}C_2 \,=\,78\text{ choices for the values of the Two Pairs.}

There are: 4C2=6 ways to get the 2 cards for one Pair.\displaystyle \text{There are: }\:_4C_2\,=\,6\text{ ways to get the 2 cards for one Pair.}

There are: 4C2=6 ways to get the 2 cards for the other Pair.\displaystyle \text{There are: }\:_4C_2\,=\,6\text{ ways to get the 2 cards for the other Pair.}

The fifth cards is chosen from the other 44 cards.

Hence, there are: 786644=123,552 ways to get Two Pairs.\displaystyle \text{Hence, there are: }\:78\cdot6\cdot6\cdot44 \:=\:123,552\text{ ways to get Two Pairs.}

P(Two Pairs)  =  123,5522,598,960    0.04754\displaystyle P(\text{Two Pairs}) \;=\;\frac{123,552}{2,598,960} \;\approx\;0.04754



e) One pair (one pair of equal face value plus three cards of different values)
Ans: 0.42257

There are 13 choices for the value of the Pair.
There are: 4C2=6\displaystyle \text{There are: }\,_4C_2 \,=\,6 ways to get the 2 cards of that Pair.

The last 3 cards are chosen from the other 48, 44, 40 cards.
. . Again, the order is not important, so we divide by 3!=6.\displaystyle 3! = 6.

Hence, there are: 1364844406=1,098,240 ways to One Pair.\displaystyle \text{Hence, there are: }\:13\cdot6\cdot\frac{48\cdot44\cdot40}{6} \:=\:1,098,240\text{ ways to One Pair.}

P(One Pair)  =  1,098,2402,598,960    0.42257\displaystyle P(\text{One Pair}) \;=\;\frac{1,098,240}{2,598,960} \;\approx\;0.42257
 
Top