Cauchy Riemann Equations

wolly

Junior Member
Joined
Jul 18, 2018
Messages
116
1000031073.png
I have to find tφ\frac{\partial t}{\partial \varphi}t=x2+y2t=x^2+y^2and φ(t(x,y))=x2+y2\varphi(t(x,y))=x^2+y^2How did 4x^2 appear?
 
View attachment 39359
I have to find tφ\frac{\partial t}{\partial \varphi}t=x2+y2t=x^2+y^2and φ(t(x,y))=x2+y2\varphi(t(x,y))=x^2+y^2How did 4x^2 appear?
You have two functions:
φ(t)\displaystyle \varphi(t)
t(x,y)\displaystyle t(x,y)

You want to find 2φx2\displaystyle \frac{\partial^2 \varphi}{\partial x^2}

Apply the chain rule.

φx=φttx=2xφt\displaystyle \frac{\partial \varphi}{\partial x} = \frac{\partial \varphi}{\partial t}\frac{\partial t}{\partial x} = 2x\frac{\partial \varphi}{\partial t}

You can change φt\displaystyle \frac{\partial \varphi}{\partial t} to dφdt\displaystyle \frac{d \varphi}{d t} if you want because it has only one variable.

2φx2=x(2xφt)\displaystyle \frac{\partial^2 \varphi}{\partial x^2} = \frac{\partial}{\partial x}\left(2x\frac{\partial \varphi}{\partial t}\right)

Apply the product rule.

2φx2=2φt+2xx(φt)\displaystyle \frac{\partial^2 \varphi}{\partial x^2} = 2\frac{\partial \varphi}{\partial t} + 2x\frac{\partial}{\partial x}\left(\frac{\partial \varphi}{\partial t}\right)

Apply the chain rule.

2φx2=2φt+2xt(φt)tx=2φt+2x2φt22x=2φt+4x22φt2\displaystyle \frac{\partial^2 \varphi}{\partial x^2} = 2\frac{\partial \varphi}{\partial t} + 2x\frac{\partial}{\partial t}\left(\frac{\partial \varphi}{\partial t}\right)\frac{\partial t}{\partial x} = 2\frac{\partial \varphi}{\partial t} + 2x\frac{\partial^2 \varphi}{\partial t^2}2x = 2\frac{\partial \varphi}{\partial t} + 4x^2\frac{\partial^2 \varphi}{\partial t^2}

That's how 4x2\displaystyle 4x^2 appeared.
 
Top