CDF - Cumulative Density Function

nasi112

Full Member
Joined
Aug 23, 2020
Messages
689
if i have a CDF

[MATH] F(x) = \begin{cases} 0, & x < 0 \\ \frac{x}{4}, & 0\leq x < 1 \\ \frac{1}{2}, & 1 \leq x < 2 \\ \frac{x}{12} + \frac{1}{2}, & 2 \leq x < 3 \\ 1, & x \geq 3 \end{cases} [/MATH]
Find [math]F(x = 1.6)[/math] and [math]p(x = 1.6)[/math]
it is clear that [MATH]F(1.6) = \frac{1}{2}[/MATH]
but what about [MATH]p(x = 1.6)[/MATH]?
 
if i have a CDF

[MATH] F(x) = \begin{cases} 0, & x < 0 \\ \frac{x}{4}, & 0\leq x < 1 \\ \frac{1}{2}, & 1 \leq x < 2 \\ \frac{x}{12} + \frac{1}{2}, & 2 \leq x < 3 \\ 1, & x \geq 3 \end{cases} [/MATH]
Find [math]F(x = 1.6)[/math] and [math]p(x = 1.6)[/math]
it is clear that [MATH]F(1.6) = \frac{1}{2}[/MATH]
but what about [MATH]p(x = 1.6)[/MATH]?
What is the relationship between F and P?
 
if you have one function, you can get the other. But the CDF has variables such as [MATH]\frac{x}{4}[/MATH]. Therefore, I cannot get its PMF.
 
for example

[MATH]p(3) = 1 - \left(\frac{x}{12} + \frac{1}{2} \right)[/MATH]
 
I am sorry. I cannot get you.

if you do complete all of them, you will notice that

p(0) + p(1) + p(2) + p(3) [MATH]\neq 1[/MATH]
then PMF will not be fair
 
Top