ceiling & floor

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,373
For which real numbers x\displaystyle x and y\displaystyle y is it true that x+y=x+y\displaystyle \lceil{x + y}\rceil = \lceil x \rceil + \lfloor y \rfloor?
 
First case.

Let x\displaystyle x be an integer and let y\displaystyle y be an integer.

If x=3\displaystyle x = 3 and y=5\displaystyle y = 5, then

3+5=8=8\displaystyle \lceil{3 + 5}\rceil = \lceil{8}\rceil = 8
3+5=3+5=8\displaystyle \lceil 3 \rceil + \lfloor 5 \rfloor = 3 + 5 = 8

Then,

3+5=3+5\displaystyle \lceil{3 + 5}\rceil = \lceil 3 \rceil + \lfloor 5 \rfloor

It worked in the first case😍
 
Second case.

Let x\displaystyle x be an integer and let y\displaystyle y be a non-integer.

If x=3\displaystyle x = 3 and y=5.2\displaystyle y = 5.2, then

3+5.2=8.2=9\displaystyle \lceil{3 + 5.2}\rceil = \lceil{8.2}\rceil = 9
3+5.2=3+5=8\displaystyle \lceil 3 \rceil + \lfloor 5.2 \rfloor = 3 + 5 = 8

Then,

3+5.23+5.2\displaystyle \lceil{3 + 5.2}\rceil \neq \lceil 3 \rceil + \lfloor 5.2 \rfloor

It didn't work in the second case😞
 
Third case.

Let x\displaystyle x be a non-integer and let y\displaystyle y be an integer.

If x=3.4\displaystyle x = 3.4 and y=5\displaystyle y = 5, then

3.4+5=8.4=9\displaystyle \lceil{3.4 + 5}\rceil = \lceil{8.4}\rceil = 9
3.4+5=4+5=9\displaystyle \lceil 3.4 \rceil + \lfloor 5 \rfloor = 4 + 5 = 9

Then,

3.4+5=3.4+5\displaystyle \lceil{3.4 + 5}\rceil = \lceil 3.4 \rceil + \lfloor 5 \rfloor

It worked in the third case🤩
 
Fourth case.

Let x\displaystyle x be a non-integer and let y\displaystyle y be a non-integer.

If x=3.4\displaystyle x = 3.4 and y=5.2\displaystyle y = 5.2, then

3.4+5.2=8.6=9\displaystyle \lceil{3.4 + 5.2}\rceil = \lceil{8.6}\rceil = 9
3.4+5.2=4+5=9\displaystyle \lceil 3.4 \rceil + \lfloor 5.2 \rfloor = 4 + 5 = 9

Then,

3.4+5.2=3.4+5.2\displaystyle \lceil{3.4 + 5.2}\rceil = \lceil 3.4 \rceil + \lfloor 5.2 \rfloor

It worked in the third case😍

But wait!!!\displaystyle \textcolor{red}{\bold{!!!}}

If x=3.8\displaystyle x = 3.8 and y=5.3\displaystyle y = 5.3, then

3.8+5.3=9.1=10\displaystyle \lceil{3.8 + 5.3}\rceil = \lceil{9.1}\rceil = 10
3.8+5.3=4+5=9\displaystyle \lceil 3.8 \rceil + \lfloor 5.3 \rfloor = 4 + 5 = 9

Then,

3.8+5.33.8+5.3\displaystyle \lceil{3.8 + 5.3}\rceil \neq \lceil 3.8 \rceil + \lfloor 5.3 \rfloor

It didn't work in the third case🤨

@fresh_42

What should I say when the fourth case is partially satisfied? And how to solve this problem (the whole problem) by using arbitrary constants?


My Conclusion\displaystyle \large \textcolor{blue}{\bold{My \ Conclusion}}
x+y=x+y\displaystyle \lceil{x + y}\rceil = \lceil x \rceil + \lfloor y \rfloor when
1. x,yZ\displaystyle \bold{1.} \ x,y \in \mathbb{Z}
2. xZ,yZ\displaystyle \bold{2.} \ x \notin \mathbb{Z},y \in \mathbb{Z}
3. x,yZ AND their fractional parts1\displaystyle \bold{3.} \ x,y \notin \mathbb{Z} \ \text{AND their fractional parts} \leq 1
 
Last edited:
Top