Chain, Product, Quotient

kmce

New member
Joined
Feb 13, 2017
Messages
31
I am trying to figure out what one of the Chain, Product, Quotient equations to use with what types of questions.

Is there a standard rule that will help me figure out what one i have to use.

The types of questions I am getting are

y=x3

f(t)= 3esin(2t)

y=4cos(x3)

f(x)= ex/ sinx

I need to be able to know if its the Chain, Product, Quotient to use with these, and i cannot find a simple way in which I am able to tell. I have the answers, so not looking for the answers for them, Just a way to help me realise what one to use
 
1.) \(\displaystyle y=x^3\)

The definition of \(\displaystyle y\) here has only a power of \(\displaystyle x\), so you only need to apply the power rule:

\(\displaystyle \displaystyle \frac{d}{dx}\left(x^n\right)=nx^{n-1}\)

\(\displaystyle \displaystyle \frac{dy}{dx}=3x^{3-1}=3x^2\)

2.) \(\displaystyle f(t)=3e^{\sin(2t)}\)

Here we see \(\displaystyle e\) being raised to a power which is a function of \(\displaystyle t\), so we will need to use the chain rule as follows:

\(\displaystyle \frac{d}{dt}\left(e^{u(t)}\right)=e^{u(t)}\frac{du}{dt}\)

Now, we also see that \(\displaystyle u\) is also a function of \(\displaystyle t\), so we need to use the chain rule again. And we also need to use the rule concerning fixed coefficients:

\(\displaystyle \displaystyle \frac{d}{dt}\left(k\cdot f(t)\right)=k\cdot\frac{d}{dt}\left(f(t)\right)\)

So, let's walk though this problem, one step at a time.

\(\displaystyle f(t)=3e^{\sin(2t)}\)

Fixed coefficient:

\(\displaystyle \displaystyle \frac{df}{dt}= 3\frac{d}{dt}\left(e^{\sin(2t)}\right)\)

Exponential and chain rules:

\(\displaystyle \displaystyle \frac{df}{dt}= 3e^{\sin(2t)}\frac{d}{dt}\left(\sin(2t)\right)\)

Sine and chain rules:

\(\displaystyle \displaystyle \frac{df}{dt}= 3e^{\sin(2t)}\cos(2t)\frac{d}{dt}\left(2t\right)\)

Fixed coefficient and power rule:

\(\displaystyle \displaystyle \frac{df}{dt}= 3e^{\sin(2t)}\cos(2t)2\frac{d}{dt}\left(t\right)\)

\(\displaystyle \displaystyle \frac{df}{dt}= 3e^{\sin(2t)}\cos(2t)2(1\cdot t^{1-1})\)

Bring it all together:

\(\displaystyle \displaystyle \frac{df}{dt}= 6\cos(2t)e^{\sin(2t)}\)

3.) \(\displaystyle y=4\cos\left(x^3\right)\)

Coefficient:

\(\displaystyle \displaystyle \frac{dy}{dx}= 4\frac{d}{dx}\left(\cos\left(x^3\right)\right)\)

Cosine and chain rules:

\(\displaystyle \displaystyle \frac{dy}{dx}= 4\left(-\sin\left(x^3\right)\right)\frac{d}{dx} \left(x^3\right)\)

Power rule:

\(\displaystyle \displaystyle \frac{dy}{dx}= -4\sin\left(x^3\right)\left(3x^{3-1}\right)\)

Thus:

\(\displaystyle \displaystyle \frac{dy}{dx}= -12x^2\sin\left(x^3\right)\)

4.) \(\displaystyle \displaystyle f(x)=\frac{e^x}{\sin(x)}\)

This is a quotient, so we can directly apply the quotient rule, and since the arguments of the exponential and sine terms are just \(\displaystyle x\), there's no need for the chain rule.

\(\displaystyle \displaystyle \frac{df}{dx}=\frac{ \sin(x)\dfrac{d}{dx} \left(e^x\right)- e^x\dfrac{d}{dx}\left( \sin(x)\right)}{\sin^2(x)}= \frac{\sin(x)e^x- e^x\cos(x)}{ \sin^2(x)}= \frac{e^x\left( \sin(x)- \cos(x)\right)}{ \sin^2(x)}\)
 
I just realised i put in the first equation wrong, it is

y=x3 ​sin x
 
I just realised i put in the first equation wrong, it is

y=x3 ​sin x

Then you could apply the product rule:

\(\displaystyle \displaystyle \frac{dy}{dx}=x^3\frac{d}{dx}\left(\sin(x)\right)+\frac{d}{dx}\left(x^3\right)\sin(x)=\cdots\)
 
I am still slightly confused with how i know what one i should use.This is the first time ive studied math in about 13 years, so simple things are so simple for me anymore :D

Anyway, so for this one

y=4cos (x3) how did you know it was the chain rule to use. From what ive understood, Product is used when its a function * function (not entirely sure if that is true). So the way ive read this is 4cos * x3​ or am i reading that wrong.
 
I am still slightly confused with how i know what one i should use.This is the first time ive studied math in about 13 years, so simple things are so simple for me anymore :D

Anyway, so for this one

y=4cos (x3) how did you know it was the chain rule to use. From what ive understood, Product is used when its a function * function (not entirely sure if that is true). So the way ive read this is 4cos * x3​ or am i reading that wrong.

The trigonometric functions require an argument, just like any other function, so it would be read as:

y equals 4 times the cosine of x cubed

\(\displaystyle \cos\) by itself is meaningless...we need to know what to take the cosine of, which is this case is the cube of \(\displaystyle x\).

So, we have a constant times a function, where the argument of the function (cosine) is a function itself (cube of \(\displaystyle x\))...and this tells us we will need to use the chain rule.
 
Last edited:
so 3esin(2t)

is chain because 2t is a function of sin? How would the 3e come into play the. Sorry this is really confusing me :confused:
 
so 3esin(2t)

is chain because 2t is a function of sin? How would the 3e come into play the. Sorry this is really confusing me :confused:

For this one, the chain rule is required because the exponent on \(\displaystyle e\) is a function of \(\displaystyle t\), and then the chain rule is required again because the argument of the sine function in the exponent is also a function of \(\displaystyle t\). It's like we have 3 nested functions. Let:

\(\displaystyle g_1(t)=3e^t\)

\(\displaystyle g_2(t)=\sin(t)\)

\(\displaystyle g_3(t)=2t\)

So, we can write:

\(\displaystyle f(t)=g_1\left(g_2\left(g_3(t)\right)\right)\)

Hence, by the chain rule:

\(\displaystyle f'(t)=g_1'\left(g_2\left(g_3(t)\right)\right) g_2'\left(g_3(t)\right)g_3'(t)\)

Any time you see where one function is nested within another, that's your clue that the chain rule will be needed. :)
 
In the equation y=3esin(2t)

Why does it become 6 cos. I mean, why is the 2 from the cos multiplied by the 3, doesnt the 2 only belong to cos.

[FONT=MathJax_Math-italic]d[/FONT][FONT=MathJax_Math-italic]f[/FONT][FONT=MathJax_Math-italic]d[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]3[/FONT][FONT=MathJax_Math-italic]e[/FONT][FONT=MathJax_Main]sin[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]cos[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math-italic]d[/FONT][FONT=MathJax_Math-italic]d[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main])[/FONT]dfdt=3esin⁡(2t)cos⁡(2t)2ddt(t)

[FONT=MathJax_Math-italic]d[/FONT][FONT=MathJax_Math-italic]f[/FONT][FONT=MathJax_Math-italic]d[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]3[/FONT][FONT=MathJax_Math-italic]e[/FONT][FONT=MathJax_Main]sin[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]cos[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main]⋅[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main])[/FONT]dfdt=3esin⁡(2t)cos⁡(2t)2(1⋅t1−1)

Bring it all together:

[FONT=MathJax_Math-italic]d[/FONT][FONT=MathJax_Math-italic]f[/FONT][FONT=MathJax_Math-italic]d[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]6[/FONT][FONT=MathJax_Main]cos[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Math-italic]e[/FONT][FONT=MathJax_Main]sin[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main])[/FONT]
 
In the equation y=3esin(2t)

Why does it become 6 cos. I mean, why is the 2 from the cos multiplied by the 3, doesnt the 2 only belong to cos.

[FONT=MathJax_Math-italic]d[/FONT][FONT=MathJax_Math-italic]f[/FONT][FONT=MathJax_Math-italic]d[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]3[/FONT][FONT=MathJax_Math-italic]e[/FONT][FONT=MathJax_Main]sin[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]cos[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math-italic]d[/FONT][FONT=MathJax_Math-italic]d[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main])[/FONT]dfdt=3esin⁡(2t)cos⁡(2t)2ddt(t)

[FONT=MathJax_Math-italic]d[/FONT][FONT=MathJax_Math-italic]f[/FONT][FONT=MathJax_Math-italic]d[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]3[/FONT][FONT=MathJax_Math-italic]e[/FONT][FONT=MathJax_Main]sin[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]cos[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main]⋅[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main]−[/FONT][FONT=MathJax_Main]1[/FONT][FONT=MathJax_Main])[/FONT]dfdt=3esin⁡(2t)cos⁡(2t)2(1⋅t1−1)

Bring it all together:

[FONT=MathJax_Math-italic]d[/FONT][FONT=MathJax_Math-italic]f[/FONT][FONT=MathJax_Math-italic]d[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main]=[/FONT][FONT=MathJax_Main]6[/FONT][FONT=MathJax_Main]cos[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main])[/FONT][FONT=MathJax_Math-italic]e[/FONT][FONT=MathJax_Main]sin[/FONT][FONT=MathJax_Main]([/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math-italic]t[/FONT][FONT=MathJax_Main])[/FONT]

If you have:

\(\displaystyle y=a\cdot f(x)\cdot b\cdot g(x)\)

Then by the commutative law of multiplication, you may write:

\(\displaystyle y=a\cdot b\cdot f(x)\cdot g(x)\)

In the example you cited, the 2 was not coupled to the cosine function, it is just a factor at that point, and we may bring like factors together as products. For example:

\(\displaystyle 2x^2\cdot3x^4=6x^6\)
 
ah ok, i hope i remember all this.

So i have 2 moer equations, 1 i think i know what it is, the other i am lost with.

The one i think i know is s=sin(4+t2) I think this is the chain rule, because its a function sin(4+t2) and then has the t2 within it.

However the one i am stuck with is y=e-t. I was initially thinking to change it to ln(-t) and then trying to work it out from there, so ln(1/t) however, I dont actually know if i can do this, since im meant to use either the chain, product and quotient formulas
 
ah ok, i hope i remember all this.

So i have 2 moer equations, 1 i think i know what it is, the other i am lost with.

The one i think i know is s=sin(4+t2) I think this is the chain rule, because its a function sin(4+t2) and then has the t2 within it.

However the one i am stuck with is y=e-t. I was initially thinking to change it to ln(-t) and then trying to work it out from there, so ln(1/t) however, I dont actually know if i can do this, since im meant to use either the chain, product and quotient formulas

1.) Okay, we are given:

\(\displaystyle s=\sin\left(4+t^2\right)\)

Yes, we have the function:

\(\displaystyle f(t)=4+t^2\)

as the argument for the sine function...so (using the rule for the sine function and the chain rule) we want:

\(\displaystyle s'=\cos\left(f(t)\right)f'(t)=\,?\)

2.) This time we are given:

\(\displaystyle y=e^{-t}\)

We have the function:

\(\displaystyle f(t)=-t\)

So, using the rule for the exponential function and the chain rule, we have:

\(\displaystyle y=e^{f(t)}f'(t)=\,?\)
 
1.) Okay, we are given:

\(\displaystyle s=\sin\left(4+t^2\right)\)

Yes, we have the function:

\(\displaystyle f(t)=4+t^2\)

as the argument for the sine function...so (using the rule for the sine function and the chain rule) we want:

\(\displaystyle s'=\cos\left(f(t)\right)f'(t)=\,?\)

2.) This time we are given:

\(\displaystyle y=e^{-t}\)

We have the function:

\(\displaystyle f(t)=-t\)

So, using the rule for the exponential function and the chain rule, we have:

\(\displaystyle y=e^{f(t)}f'(t)=\,?\)


Ok so the top one would be

\(\displaystyle cos u\) x \(\displaystyle 4+t2\)


so

\(\displaystyle 2tcos (4+t2​)\)

The second one, i still have no idea, my table says the derivative of an exponential stays the same, so this one i have absolutely no idea what to do with. The only thing i can think is do ln t, then something with 1/t

Edit. Might have worked it out.

So v=e u=t

so it would be e-t x -t . or something along the lines of that
 
Last edited:
Ok so the top one would be

\(\displaystyle cos u\) x \(\displaystyle 4+t2\)


so

\(\displaystyle 2tcos (4+t2​)\)

The second one, i still have no idea, my table says the derivative of an exponential stays the same, so this one i have absolutely no idea what to do with. The only thing i can think is do ln t, then something with 1/t

Edit. Might have worked it out.

So v=e u=t

so it would be e-t x -t . or something along the lines of that

You are correct that the first one is:

\(\displaystyle s'=2t\cos\left(4+t^2\right)\)

For the second one, we have:

\(\displaystyle \displaystyle y'=e^{-t}\frac{d}{dt}(-t)=-e^{-t}\)
 
Oh i thought it would be something more advanced than that , Thanks for the help
 
i hope i remember all this.
I used to say the same thing, when I was taking math classes.

At some point, I realized that I needed more than hope. My solution? Extra practice!

I made time to work extra problems, and I continued doing that until I felt confident I had learned what I needed to know. :cool:
 
Top