(1 pt) Suppose that χ(s,t)=−4s2−2t2,y a function of (s,t) with y(1,1)=1 and ∂t∂y(1,1)=−2.
Suppose that u=xy,v a function of x,y with ∂y∂v(−6,1)=4.
Now suppose that f(s,t)=u(x(s,t),y(s,t)) and g(s,t)=v(x(s,t),y(s,t)). You are given:
. . . . .∂s∂f(1,1)=−32,. . .∂t∂f(1,1)=8,. . .∂s∂g(1,1)=−16.
The value of ∂t∂g(1,1) must be:
dv/dt=dv/dx*dx/dt+dv/dy*dy/dt
dx/dt=-4t -> evaluate at (1,1) =-4
dv/dt=-4dv/dx+4(-2)
dv/dt=-4dv/dx-8
How can I find the missing dv/dx in order to get a value for dv/dt? Thanks!
Suppose that u=xy,v a function of x,y with ∂y∂v(−6,1)=4.
Now suppose that f(s,t)=u(x(s,t),y(s,t)) and g(s,t)=v(x(s,t),y(s,t)). You are given:
. . . . .∂s∂f(1,1)=−32,. . .∂t∂f(1,1)=8,. . .∂s∂g(1,1)=−16.
The value of ∂t∂g(1,1) must be:
dv/dt=dv/dx*dx/dt+dv/dy*dy/dt
dx/dt=-4t -> evaluate at (1,1) =-4
dv/dt=-4dv/dx+4(-2)
dv/dt=-4dv/dx-8
How can I find the missing dv/dx in order to get a value for dv/dt? Thanks!
Last edited by a moderator: