circle shaded area

franklin91

New member
Joined
Sep 14, 2010
Messages
12
hi geometry is not really my strong suit and was wondering if someone could help me figure this problem out.....thank you

three circles of radii 4,5,6 cm are mutually tangent. Find the shaded area enclosed between the circles.
 


By connecting the centers, a triangle is formed.

Subtract away the area of the sectors from this triangle; what's left is the area between the tangent circles.

See discussions here:

http://answers.yahoo.com/question/index ... 449AAs1nDQ

http://answers.yahoo.com/question/index ... 003AAmi4pl

Here's an image, to look at. The labels on the image might not match the discussions above, but this is what the triangle looks like.

(Double-click image to expand, if needed.)

[attachment=0:3rgifeup]Sectors.JPG[/attachment:3rgifeup]
 
Hello, franklin911

mmm444bot has an excellent game plan . . .


Three circles of radii 4,5,6 cm are mutually tangent.
Find the shaded area enclosed between the circles.

Let the centers of the circles be A,B,C, respectively.\displaystyle \text{Let the centers of the circles be }A, B, C\text{, respectively.}
We have ΔABC with sides: AB=9,AC=10,BC=11.\displaystyle \text{We have }\Delta ABC\text{ with sides: }\:AB = 9,\:AC = 10,\:BC = 11.


Using the Law of Cosines, we have:\displaystyle \text{Using the Law of Cosines, we have:}

. . cosA=102+921122(10)(9)  =  60180A=cos1(13)1.23sinA=223\displaystyle \cos A \:=\:\frac{10^2+9^2-11^2}{2(10)(9)} \;=\;\tfrac{60}{180} \quad\Rightarrow\quad A \:=\:\cos^{-1}(\tfrac{1}{3}) \:\approx\:1.23 \quad\Rightarrow\quad \sin A \:=\:\tfrac{2\sqrt{2}}{3}

. . cosB=92+1121022(9)(11)  =  102198B=cos1(1733)    1.03\displaystyle \cos B \:=\:\frac{9^2+11^2-10^2}{2(9)(11)} \;=\;\tfrac{102}{198} \quad\Rightarrow\quad B \:=\:\cos^{-1}(\tfrac{17}{33}) \;\approx\;1.03

. . cosC  =  102+112922(10)(11)  =  140220C=cos1(711)    0.88\displaystyle \cos C \;=\;\frac{10^2+11^2-9^2}{2(10)(11)} \;=\;\tfrac{140}{220} \quad\Rightarrow\quad C \:=\:\cos^{-1}(\tfrac{7}{11}) \;\approx\;0.88


Area (ΔABC)  =  12bcsinA  =  12(10)(9)223=302    42.43\displaystyle \text{Area }(\Delta ABC) \;=\;\tfrac{1}{2}bc\sin A \;=\;\tfrac{1}{2}(10)(9)\tfrac{2\sqrt{2}}{3} \:=\:30\sqrt{2} \;\approx\;42.43

. . \(\displaystyle \text{Area (sector }A)} \;=\;\tfrac{1}{2}(4^2)(1.23) \;=\;9.85\)

. . Area (sector B)  =  12(52)(1.03)=  12.87\displaystyle \text{Area (sector B)} \;=\;\tfrac{1}{2}(5^2)(1.03) \:=\;12.87

. . Area (sector C)  =  12(62)(0.88)  =  15.86\displaystyle \text{Area (sector C)} \;=\;\tfrac{1}{2}(6^2)(0.88) \;=\;15.86


Therefore: Area  =  42.439.8512.8715.86  =  3.85 cm2\displaystyle \text{Therefore: }\:\text{Area} \;=\;42.43 - 9.85 - 12.87 - 15.86 \;=\;3.85\text{ cm}^2

 
Top