I iDoof New member Joined Oct 17, 2005 Messages 21 Oct 23, 2005 #1 i've got this infinite series: the SUM of (n!/(n^n)) from n=1 to infinity. i think one of the comparison test is what i need...but i don't know what to compare it to... someone please lead the way for me!!! thanks
i've got this infinite series: the SUM of (n!/(n^n)) from n=1 to infinity. i think one of the comparison test is what i need...but i don't know what to compare it to... someone please lead the way for me!!! thanks
tkhunny Moderator Staff member Joined Apr 12, 2005 Messages 11,325 Oct 23, 2005 #2 What is it that you are trying to show? A problem statement would help.
S soroban Elite Member Joined Jan 28, 2005 Messages 5,584 Oct 24, 2005 #3 Hello, iDoof! I assume you're trying to prove convergence or divergence. the SUM of (n!/(n^n)) from n=1 to infinity. Click to expand... The Ratio Test works for me . . . but it's messy. . . . . . .a<sub>n+1</sub> . . . . . .(n+1)! . . . n<sup>n</sup> R . = . ------- . = . ------------- . ---- . . . . . . .a<sub>n</sub> . . . . . (n+1)<sup>n+1</sup> . . .n! . . . . . . . . . . . . . . . n<sup>n</sup> . . . . . . . . . . .n<sup>n</sup> . . . = . (n + 1) ---------------- . = . ---------- . . . . . . . . . . . .(n+1)(n+1)<sup>n</sup> . . . . (n + 1)<sup>n</sup> . . . . . . . . . .1 . . . . . . . . . . .1 . . . = . -------------- . = . ------------ . . . . . . .(n + 1)<sup>n</sup> . . . . . . (n + 1)<sup>n</sup> . . . . . . .---------- . . . . . . (-------) . . . . . . . . . n<sup>n</sup> . . . . . . . . ( . n . ) . . . . . . . . . 1 . . . = . ------------- . . . . . . (1 + 1/n)<sup>n</sup> Now we take the limit as n -> infinity. If you recall the definition of e, you see that this limit approaches 1/e. Since: . lim R .= .1/e .< .1, the series converges. . . . . . .n->oo
Hello, iDoof! I assume you're trying to prove convergence or divergence. the SUM of (n!/(n^n)) from n=1 to infinity. Click to expand... The Ratio Test works for me . . . but it's messy. . . . . . .a<sub>n+1</sub> . . . . . .(n+1)! . . . n<sup>n</sup> R . = . ------- . = . ------------- . ---- . . . . . . .a<sub>n</sub> . . . . . (n+1)<sup>n+1</sup> . . .n! . . . . . . . . . . . . . . . n<sup>n</sup> . . . . . . . . . . .n<sup>n</sup> . . . = . (n + 1) ---------------- . = . ---------- . . . . . . . . . . . .(n+1)(n+1)<sup>n</sup> . . . . (n + 1)<sup>n</sup> . . . . . . . . . .1 . . . . . . . . . . .1 . . . = . -------------- . = . ------------ . . . . . . .(n + 1)<sup>n</sup> . . . . . . (n + 1)<sup>n</sup> . . . . . . .---------- . . . . . . (-------) . . . . . . . . . n<sup>n</sup> . . . . . . . . ( . n . ) . . . . . . . . . 1 . . . = . ------------- . . . . . . (1 + 1/n)<sup>n</sup> Now we take the limit as n -> infinity. If you recall the definition of e, you see that this limit approaches 1/e. Since: . lim R .= .1/e .< .1, the series converges. . . . . . .n->oo