Complex numbers

TsAmE

Junior Member
Joined
Aug 28, 2010
Messages
55
Find integers p and q such that (3+7i)(p+qi)\displaystyle (3 + 7i)(p + qi) is purely imaginary.

Attempt:

(3+7i)(p+qi)\displaystyle (3 + 7i)(p + qi)
=3p+3qi+7pi7q\displaystyle =3p + 3qi + 7pi - 7q
=3p7q+3qi+7pi\displaystyle =3p - 7q + 3qi + 7pi

Since 3p - 7q is the real part, it must = 0 therefore:

3p7q=0\displaystyle 3p - 7q = 0

p=7q3\displaystyle p = \frac{7q}{3}

and

q=3p7\displaystyle q = \frac{3p}{7}

but the correct answer was p = 7n and q = 3n, where nEZ. I am confused :?
 
That's what you have. Where is your confusion?

3p-7q = 0

If n is a complex number, then p = 7n and q = 3n, giving: 3(7n) - 7(3n) = 21n - 21n = 0
 
tkhunny said:
That's what you have. Where is your confusion?

3p-7q = 0

If n is a complex number, then p = 7n and q = 3n, giving: 3(7n) - 7(3n) = 21n - 21n = 0

I am not sure where you got p = 7n and q = 3n using 3p - 7q = 0
 
TsAmE said:
Find integers p and q such that (3+7i)(p+qi)\displaystyle (3 + 7i)(p + qi) is purely imaginary.

3p7q=0\displaystyle 3p - 7q = 0

p=7q3\displaystyle p = \frac{7q}{3}

and

q=3p7\displaystyle q = \frac{3p}{7}

but the correct answer was p = 7n and q = 3n, where nEZ. I am confused :?

When you get it to 3p7q=0,\displaystyle 3p - 7q = 0, then you can change it to:

3p=7q\displaystyle 3p = 7q

3pq=7qq\displaystyle \frac{3p}{q} = \frac{7q}{q}

3pq=7\displaystyle \frac{3p}{q} = 7

13(3pq)=13(71)\displaystyle \frac{1}{3}( \frac{3p}{q}) = \frac{1}{3}(\frac{7}{1})

pq=73\displaystyle \frac{p}{q} = \frac{7}{3}

73=7131=7232=7333= ...=7(1)3(1)=7(2)3(2)= ...\displaystyle \frac{7}{3} = \frac{7 \cdot 1 }{3 \cdot 1} = \frac{7 \cdot 2}{3 \cdot 2} = \frac{7 \cdot 3}{3 \cdot 3} = \ . . . = \frac{7 \cdot (-1)}{3 \cdot (-1)} = \frac {7 \cdot (-2)}{3 \cdot (-2)} = \ . . .


The numerator can be any integer multiple of 7, and the denominator can be any corresponding integer multiple of 3,

except a zero multiple, because  7030=00  is undefined.\displaystyle except \ a \ zero \ multiple, \ because \ \ \frac {7 \cdot 0}{3 \cdot 0} = \frac {0}{0} \ \ is \ undefined.

Therefore, pq=7n3n,\displaystyle \frac{p}{q} = \frac{7n}{3n}, where n is a nonzero integer.

So, taking apart this fraction,  p=7n and q=3n.\displaystyle \ p = 7n \ and \ q = 3n.
 
Top