compound formula question

chhoon

New member
Joined
Oct 8, 2010
Messages
1
use an appropriate compound formula to determine an extra value for

sin(31pi/12)

Please help me solve this ! test tomorrow!
 


I'm not sure what an "extra value" is, but there are different ways to use compound-angle formulas to evaluate sin(31Pi/12).

EG:

31Pi/12 = 40Pi/12 - 9Pi/12

I mean, you could use the formula for sin(u - v) here, yes?

 
Hello, chhoon!

Use an appropriate compound formula to determine the exact value for: sin(31π12)\displaystyle \text{Use an appropriate compound formula to determine the exact value for: }\,\sin\left(\frac{31\pi}{12}\right)

Note that: 3112  =  2+712  =  2+412+312  =  2+13+14\displaystyle \text{Note that: }\:\frac{31}{12} \;=\;2 + \frac{7}{12} \;=\;2 + \frac{4}{12} + \frac{3}{12} \;=\;2 + \frac{1}{3} + \frac{1}{4}


So we have:   sin(31π12)  =  sin(2π+π3+π4)  =  sin(π3+π4)\displaystyle \text{So we have: }\;\sin\left(\frac{31\pi}{12}\right) \;=\;\sin\left(2\pi + \frac{\pi}{3} + \frac{\pi}{4}\right) \;=\;\sin\left(\frac{\pi}{3} + \frac{\pi}{4}\right)


Now apply:   sin(A+B)=sinAcosB+cosAsinB\displaystyle \text{Now apply: }\;\sin(A+B) \:=\:\sin A\cos B + \cos A\sin B


We have:   sin(π3+π4)  =  sinπ3cosπ4+cosπ3sinπ4\displaystyle \text{We have: }\;\sin\left(\frac{\pi}{3} + \frac{\pi}{4}\right) \;=\;\sin\frac{\pi}{3}\cos\frac{\pi}{4} + \cos\frac{\pi}{3}\sin\frac{\pi}{4}

. . . . . . . . . . . . . . . . .=    3222    +    1222\displaystyle =\;\;\frac{\sqrt{3}}{2}\cdot\frac{\sqrt{2}}{2} \;\;+\;\; \frac{1}{2}\cdot\frac{\sqrt{2}}{2}

. . . . . . . . . . . . . . . . .=6+24\displaystyle =\qquad \frac{\sqrt{6} + \sqrt{2}}{4}
 
Top