C chhoon New member Joined Oct 8, 2010 Messages 1 Oct 8, 2010 #1 use an appropriate compound formula to determine an extra value for sin(31pi/12) Please help me solve this ! test tomorrow!
use an appropriate compound formula to determine an extra value for sin(31pi/12) Please help me solve this ! test tomorrow!
mmm4444bot Super Moderator Joined Oct 6, 2005 Messages 10,958 Oct 8, 2010 #2 I'm not sure what an "extra value" is, but there are different ways to use compound-angle formulas to evaluate sin(31Pi/12). EG: 31Pi/12 = 40Pi/12 - 9Pi/12 I mean, you could use the formula for sin(u - v) here, yes?
I'm not sure what an "extra value" is, but there are different ways to use compound-angle formulas to evaluate sin(31Pi/12). EG: 31Pi/12 = 40Pi/12 - 9Pi/12 I mean, you could use the formula for sin(u - v) here, yes?
S soroban Elite Member Joined Jan 28, 2005 Messages 5,584 Oct 8, 2010 #3 Hello, chhoon! \(\displaystyle \text{Use an appropriate compound formula to determine the exact value for: }\,\sin\left(\frac{31\pi}{12}\right)\) Click to expand... \(\displaystyle \text{Note that: }\:\frac{31}{12} \;=\;2 + \frac{7}{12} \;=\;2 + \frac{4}{12} + \frac{3}{12} \;=\;2 + \frac{1}{3} + \frac{1}{4}\) \(\displaystyle \text{So we have: }\;\sin\left(\frac{31\pi}{12}\right) \;=\;\sin\left(2\pi + \frac{\pi}{3} + \frac{\pi}{4}\right) \;=\;\sin\left(\frac{\pi}{3} + \frac{\pi}{4}\right)\) \(\displaystyle \text{Now apply: }\;\sin(A+B) \:=\:\sin A\cos B + \cos A\sin B\) \(\displaystyle \text{We have: }\;\sin\left(\frac{\pi}{3} + \frac{\pi}{4}\right) \;=\;\sin\frac{\pi}{3}\cos\frac{\pi}{4} + \cos\frac{\pi}{3}\sin\frac{\pi}{4}\) . . . . . . . . . . . . . . . . .\(\displaystyle =\;\;\frac{\sqrt{3}}{2}\cdot\frac{\sqrt{2}}{2} \;\;+\;\; \frac{1}{2}\cdot\frac{\sqrt{2}}{2}\) . . . . . . . . . . . . . . . . .\(\displaystyle =\qquad \frac{\sqrt{6} + \sqrt{2}}{4}\)
Hello, chhoon! \(\displaystyle \text{Use an appropriate compound formula to determine the exact value for: }\,\sin\left(\frac{31\pi}{12}\right)\) Click to expand... \(\displaystyle \text{Note that: }\:\frac{31}{12} \;=\;2 + \frac{7}{12} \;=\;2 + \frac{4}{12} + \frac{3}{12} \;=\;2 + \frac{1}{3} + \frac{1}{4}\) \(\displaystyle \text{So we have: }\;\sin\left(\frac{31\pi}{12}\right) \;=\;\sin\left(2\pi + \frac{\pi}{3} + \frac{\pi}{4}\right) \;=\;\sin\left(\frac{\pi}{3} + \frac{\pi}{4}\right)\) \(\displaystyle \text{Now apply: }\;\sin(A+B) \:=\:\sin A\cos B + \cos A\sin B\) \(\displaystyle \text{We have: }\;\sin\left(\frac{\pi}{3} + \frac{\pi}{4}\right) \;=\;\sin\frac{\pi}{3}\cos\frac{\pi}{4} + \cos\frac{\pi}{3}\sin\frac{\pi}{4}\) . . . . . . . . . . . . . . . . .\(\displaystyle =\;\;\frac{\sqrt{3}}{2}\cdot\frac{\sqrt{2}}{2} \;\;+\;\; \frac{1}{2}\cdot\frac{\sqrt{2}}{2}\) . . . . . . . . . . . . . . . . .\(\displaystyle =\qquad \frac{\sqrt{6} + \sqrt{2}}{4}\)