conversion

tmac324

New member
Joined
Sep 29, 2009
Messages
9
a vintner fotifies wine that contains 10% alcohol by adding 70% alcohol solution to it. the resulting mixture has an alcohol strength of 16% and fills 1000 one liter bottles.. how many liters (L) of the wine and of the alcohol solution does he use?
 
Hello, tmac324!

A vintner fortifies wine that contains 10% alcohol by adding 70% alcohol solution to it.
The resulting mixture has an alcohol strength of 16% and fills 1000 one liter bottles.
How many liters (L) of the wine and of the alcohol solution does he use?

The final mixture is 1000 liters which is 16% alcohol.\displaystyle \text{The final mixture is 1000 liters which is 16\% alcohol.}
. . It will contain: 0.16×1000=160 liters of alcohol.\displaystyle \text{It will contain: }\:0.16 \times 1000 \:=\:\boxed{160}\text{ liters of alcohol.}


He uses x liters of wine which is 10% alcohol.\displaystyle \text{He uses }x\text{ liters of wine which is 10\% alcohol.}
. . This contains: 0.1x liters of alcohol.\displaystyle \text{This contains: }\:0.1x\text{ liters of alcohol.}

He adds 100x liters of solution which is 70% alcohol.\displaystyle \text{He adds }100-x\text{ liters of solution which is 70\% alcohol.}
. . This contains: 0.7(1000x) liters of alcohol.\displaystyle \text{This contains: }\:0.7(1000-x)\text{ liters of alcohol.}

The final mixture will contain: 0.1x+0.7(1000x) liters of alcohol.\displaystyle \text{The final mixture will contain: }\:\boxed{0.1x + 0.7(1000-x)}\text{ liters of alcohol.}


We just described the final amount of alcohol in two ways.\displaystyle \text{We just described the final amount of alcohol in }two\text{ ways.}

\(\displaystyle \text{There is our equation! }\quad\hdots \quad 0.1x + 0.7(1000-x) \;=\;160\)

 
Top